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Abstract
This paper analyzes repeated games in which it is possible for play-

ers to observe the other players’ past actions without noise but it is
costly. One’s observation decision itself is not observable to the other
players, and this private nature of monitoring activity makes it difficult
to give the players proper incentives to monitor each other. We provide
a sufficient condition for a feasible payoff vector to be approximated
by a sequential equilibrium when the observation costs are sufficiently
small. We then show that this result generates an approximate Folk
Theorem for a wide class of repeated games with observation costs.
The Folk Theorem holds for a variant of prisoners’ dilemma, partner-
ship games, and any games in which the players have an ability to
“burn” small amounts of their own payoffs.

Journal of Economic Literature Classification Numbers: C72, C73,
D43, D82.

Key Words: repeated games, private monitoring, costly monitor-
ing, Folk Theorem.

∗This research was started while Miyagawa was visiting the Graduate School of Eco-
nomics at Kobe University; he thanks the school for its hospitality. Sekiguchi thanks
financial supports from Grant-in-Aid for Scientific Research and the Japan Economic Re-
search Foundation. All of us thank the participants of the 8th Decentralization Conference
in Japan and the workshops at the University of Tokyo and Hitotsubashi University for
helpful comments.

1



1 Introduction

In the theory of repeated games, the benchmark assumption is that of per-
fect monitoring, i.e., the players obtain perfect information about the other
players’ past actions. Under the assumption, the theory shows that the
players can sustain a large set of payoff vectors as equilibria by making their
actions contingent on the other players’ past actions.1 The recent litera-
ture relaxes the assumption of perfect monitoring and considers the case in
which players receive only imperfect (public or private) information about
the other players’ past actions.2

The present paper relaxes the assumption of perfect monitoring in a
different direction. We consider the case in which it is possible for the
players to obtain perfect information about the other players’ past actions
but it is costly. We assume that at the end of each period, each player
decides whether to obtain information about the actions chosen by the other
players in the period. Obtaining the information costs a certain amount of
utility, which is referred to as the observation cost. If a player chooses not
to pay the observation cost at the end of a period, then she obtains no
information about the other players’ actions chosen in the period.3 We also
assume that a player’s observation decision itself is not observable to the
other players. Perfect monitoring can be considered as the limit case in
which the observation costs are zero for all players.

It is important to note that the model of costly monitoring differs consid-
erably from that of perfect (costless) monitoring even when the observation
costs are arbitrarily small as long as they are positive. To see this, con-
sider a repeated prisoners’ dilemma with costly monitoring. Suppose that
the players use the trigger strategy profile, in which each player starts with
cooperation but switches to perpetual defection if (and only if) a defection
is observed in the past. If the observation costs are zero and the players
are sufficiently patient, then the trigger strategy profile is an equilibrium.
However, this strategy profile is not an equilibrium when the observation

1See, e.g., Abreu (1986, 1988) and Fudenberg and Maskin (1986).
2For the case of imperfect public monitoring, see, e.g., Abreu, Pearce, and

Stacchetti (1990), Fudenberg, Levine, and Maskin (1994), and Fudenberg and
Levine (1994). For the case of imperfect private monitoring, see, e.g., Sekiguchi (1997),
Bhaskar and van Damme (2002), Bhaskar and Obara (2002), Ely and Valimaki (2002),
Mailath and Morris (2002), Matsushima (2002), and Piccione (2002).

3This formulation raises a subtle issue on when the players receive payoffs. While this
is discussed in detail in subsequent sections, for the time being imagine that the payoffs
are received as a whole when the game “ends,” interpreting the discount factor as the
probability with which the game continues.
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costs are strictly positive even when they are arbitrarily small. The reason
is simply that since the strategy profile is deterministic, each player knows
the other player’s past and future actions on the equilibrium path and has
no reason to pay the observation costs. Therefore, in equilibrium, no one
monitors the other player. However, then deviations from the strategy pro-
file are not detected and hence cooperation is not sustained as an equilib-
rium. This argument generalizes and we can show that at any pure-strategy
equilibrium of a repeated game with observation costs, the players play a
stage-game equilibrium in every period (with no observation activity).4

Therefore, a construction of non-trivial cooperative/efficient equilibria
must use strategy profiles in which some of the players randomize. The
main contribution of the present paper is to show that such a construction
is possible and therefore some positive results are obtained in a wide class
of situations. First, we provide a sufficient condition for a payoff vector
to be approximated by a sequential equilibrium when the observation costs
are sufficiently small and the players are sufficiently patient. Using the
condition, we then prove an approximate Folk Theorem for several classes
of repeated games with observation costs. The approximate Folk Theorem
is shown to hold for a variant of prisoners’ dilemma, partnership games, and
any game in which the players have an ability to “burn” small amounts of
their own payoffs.

An important assumption for the positive results is small observation
costs. The results say only that a large set of payoff vectors can be sustained
when the observation costs are small and the players are patient. We are
unable to prove a general Folk Theorem/efficiency result for a given level of
observation cost. However, we believe that our result is of some economic
relevance because in many interesting economic applications, the observation
costs can be considerably small. For example, consider two firms competing
in terms of prices. If these firms compete in a small local market, it can
be a matter of walking several blocks to see the rival’s prices. The cost of
such activity can be indeed small in comparison with the magnitude of their
business.

More theoretically, it can be argued that the approximate Folk Theorem
4The unobservability of monitoring decisions plays an important role in the result. If

monitoring decisions are observable, then the situation does not differ very much from
perfect monitoring. Indeed, in the repeated prisoners’ dilemma with observation costs,
cooperation can be sustained by a modified trigger strategy profile in which punishment
is triggered by not only a single defection but also a single failure to observe the other
player’s action. On the other hand, the perfect observability of monitoring decisions is
difficult to imagine when the monitoring activity takes the form of spying or glimpsing.
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demonstrates the robustness of the assumption of perfect monitoring. On
the one hand, many regard perfect monitoring as an extreme assumption. In
reality, information about the past comes at a (possibly small) cost. On the
other hand, as we have seen before, the model with zero observation costs
and the one with positive costs differ significantly in terms of the incentive
for monitoring. Thus, it is theoretically an interesting question whether
the two models yield qualitatively similar results, justifying our approach to
regard perfect monitoring as a limit of costly monitoring.

A few papers have studied repeated games with costly monitoring. Ahn
and Suominen (2001) consider a random matching game (like the one in
Kandori (1992)) with a twist that each player is given an opportunity to
invest in a monitoring technology in the initial period. If the player invests
in the technology in the initial period, she can observe her neighbors’ actions
in all subsequent periods. Thus the costly monitoring activity in their model
has a once-and-for-all nature. In our model, on the other hand, the player
has to engage in costly monitoring in every period if she wants to keep track
of the other players’ behavior completely.

A paper more closely related to ours is Miyahara (2002), who considers
a repeated prisoners’ dilemma in which monitoring at the end of a period
gives a player information not only about the period but also about some
of the previous periods. Miyahara (2002) shows that efficiency can be ap-
proximated if the monitoring costs are sufficiently small. It is important
to point out that the result in the present paper does not subsume that of
Miyahara (2002) since the latter uses a construction that takes advantage
of the assumption that more than one period in the past can be observed.

Our model is a special example of repeated games with private monitor-
ing. Since each player’s observation (if any) is not observable to the other
players, it is private information, which makes our model private monitor-
ing. The literature of repeated games with private monitoring has focused
on the case when players receive noisy signals of the other players’ actions
costlessly, while we examine the case when players obtain complete informa-
tion if they pay observation costs. Thus, the results and the construction of
cooperative/efficient equilibria in the literature do not apply in our model.
However, this does not mean that our model has no bearing on repeated
games with noisy costless private monitoring. In Section 6, we briefly dis-
cuss what happens if costly monitoring is introduced into repeated games
with noisy private monitoring.

The remaining part of this paper is organized as follows. Section 2
introduces the model. Section 3 provides important definitions. Section 4
states our main result, describes the strategy profile used in the proof, and
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sketches the proof. Section 5 applies the result to prove an approximate
Folk Theorem in a variant of prisoners’ dilemma, partnership games, and
games with an opportunity of utility burning. Section 6 discusses possible
extensions of our model. The Appendix proves the main result.

2 Model

The stage game is a finite n-player game G = {n, A, (ui)n
i=1}, where A =

×n
i=1Ai and ui : A → R is player i’s stage payoff function. We often write

u(a) = (ui(a))n
i=1. For each i, let Si be the set of all mixed actions for

player i and let S = ×n
i=1Si. For a mixed action profile s ∈ S, we abuse

notation and let ui(s) denote the expected payoff of player i under s. Let
“co” denote convex hull, and define V = co{u(a) : a ∈ A}, which is the set
of feasible payoff vectors.

Game G itself does not include monitoring activity. Thus, precisely
speaking, G is not the game played in every period. It is meant to describe
the basic strategic interaction within each period.

The infinitely repeated version of G (plus monitoring activity) with dis-
counting and observation costs is denoted by Γ(δ, λ), where δ = (δ1, . . . , δn) ∈
(0, 1)n is a vector of discount factors and λ = (λ1, . . . , λn) ∈ R

n
++ is a vec-

tor of observation costs. We permit differential discount factors.5 In each
period, each player simultaneously chooses an action ai ∈ Ai and then de-
cides whether to privately observe the actions that the other players chose
in the period. For each player i, λi denotes the cost of observing the others’
actions. We also assume that if player i does not monitor the other players
at the end of a period, then no information about the action profile of the
other players in the period is revealed to player i. Each player’s monitor-
ing decision itself is assumed to be private and not observable to the other
players. Hence player i’s private information on the play of a given past
period can be represented by a pair of her chosen action and observations,
(ai, ωi) ∈ Ai × (A−i ∪ {φ}). Here, (ai, ωi) = (ai, a−i) means that player i
chose ai, monitored the other players, and observed a−i. On the other hand,
(ai, ωi) = (ai, φ) means that player i chose ai and did not monitor the other
players.

5As Lehrer and Pauzner (1999) show, when discount factors are heterogeneous, payoff
vectors outside V might be feasible. However, the present paper concentrates on sustaining
payoff vectors in V for expositional simplicity. We consider differential discount factors
only to demonstrate that our analysis does not require identical discount factors, although
our construction can be used to sustain payoff vectors outside V .
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We assume that monitoring is the only way to obtain information about
the other players’ past actions. This implies that the players do not receive
the stage payoffs in each period, but receive them in total at the “end” of
the repeated game. Of course, the infinitely repeated game never ends un-
der the basic interpretation of the game. However, if we regard each δi as
a (subjective) probability with which the game continues, then the inter-
pretation about the timing of receiving payoff is less problematic. Anyway,
this assumption is extreme, and it is assumed to make the issue of costly
monitoring as stark as possible (and partly for analytical simplicity). In
Section 6, we briefly comment on what happens if payoffs are received in
each period, in which case realized payoffs give players information about
the others’ actions.

We also assume that there exists a public randomization device which
generates a sunspot according to the uniform distribution over the unit
interval [0, 1]. At the beginning of each period, a sunspot is realized and
observed by the players before they choose their actions. The (private)
history for player i at the beginning of period t before she chooses an action
is denoted by ht

i and defined as the sequence of her private information and
realized sunspots up to the beginning of the period. Thus, the set of all
possible histories for player i at period t is defined by Ht

i = [0, 1]t × (Ai ×
(A−i ∪{φ}))t−1, where H1

i is equivalent to the set of sunspots. Then the set
of possible histories for player i is Hi = ∪∞

t=1H
t
i .

Player i’s strategy σi is a function from Hi to Si × [0, 1]|Ai| where |Ai|
is the cardinality of Ai. Thus, for any history ht

i ∈ Hi, we have σi(ht
i) =

(si(t), {li(ai, h
t
i)}ai∈Ai), where si(t) is player i’s (possibly mixed) action in

period t given ht
i, and li(ai, h

t
i) is the probability that player i monitors

the other players given that the history is ht
i and she played ai in period t.

Player i’s payoffs in Γ(δ, λ) are the average (expected) discounted sum of
the stage game payoffs minus observation costs. Formally, player i’s payoffs
under a strategy profile σ = (σ1, . . . , σn) are denoted by gi(σ) and given by

gi(σ) = (1 − δi)
∞∑

t=1

δt−1
i E

[
ui(a(t)) − λi · li(ai(t), ht

i) | σ
]
,

where E[ · | σ] denotes the expectation with respect to the probability
measure over histories induced by strategy profile σ.

3 Definitions

This section introduces some definitions which facilitate subsequent analysis.
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Let the stage game G = {n, A, (ui)n
i=1} be given. For a given (possibly

mixed) action profile s ∈ S for G, we define

BRi(s) = {a′i ∈ Ai : ui(a′i, s−i) ≥ ui(ai, s−i) ∀ai ∈ Ai},

which is the set of (pure-action) best responses of player i against s−i. For
a given (pure) action profile a ∈ A, we define

Bi(a) = {a′i ∈ Ai : ui(a′i, a−i) > ui(a)},

which is the set of (strictly) better replies to a−i;

D(a) = {i : ai /∈ BRi(a)},

which is the set of players for whom ai is not a best response to a−i;

Dw (a) = {i : BRi(a) �= {ai}},

which is the set of players for whom ai is not a unique best response to a−i;
and

SD(a) = {i : BRi(a′) = {ai} ∀a′ ∈ A},
which is the set of players for whom ai is the strictly dominant action.

Let NE (G) be the set of (mixed) Nash equilibria of G. A penal code
is a profile of Nash equilibria, (ŝ(i))n

i=1, where ŝ(i) ∈ NE (G) for each i ∈
{1, . . . , n}.6 We allow ŝ(i) = ŝ(j) for some i and j �= i.

Given a penal code (ŝ(i))n
i=1, let E1 ⊆ A be the set of all action profiles

a ∈ A such that for some player i,

(1-i) D(a) = {i},
(1-ii) for all j �= i, BRj(a) ∩ BRj(ŝ(i)) = ∅, and

(1-iii) there exist a′i ∈ Bi(a) and ζ ∈ (0, 1) such that for all j �= i,

aj ∈ BRj((1 − ζ)ai + ζa′i, a−i). (1)

Next, let E2 ⊆ A be the set of all action profiles a ∈ A such that for
some players i and j �= i,

(2-i) {i, j} ⊆ D(a),
6This terminology follows Abreu (1988), although our use of the term is slightly differ-

ent: while Abreu (1988) used the term for a profile of repeated game equilibria, we use it
for a profile of stage game equilibria.
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(2-ii) there exist a′i ∈ Bi(a) and a′j ∈ Bj(a) such that for all k ∈ {i, j},

{ak, a
′
k} ∩

[
BRk(ŝ(i)) ∪ BRk(ŝ(j))

]
= ∅,

(2-iii) for all k /∈ {i, j} ∪ SD(a), ak /∈ BRk(ŝ(i)) ∩ BRk(ŝ(j)).

For a given a ∈ E2, players i and j for whom (2-i)–(2-iii) hold are called
associated players. For a given a ∈ E2, there may exist more than one pair
of associated players, but we select a pair {i, j} arbitrarily for each a ∈ E2

and denote the selected pair by AP(a). Similarly, for each a ∈ E1 and i
such that {i} = D(a), we let AP(a) = {i}. Let E = E1 ∪ E2.

Given a penal code (ŝ(i))n
i=1, we say that a payoff vector v = (vi)n

i=1 ∈ R
n

is supportable with respect to (ŝ(i))n
i=1, if there exists a probability distri-

bution on E, denoted (ρ(a))a∈E , such that

(s-i) for any i, vi =
∑

a∈E ρ(a)ui(a),

(s-ii) for any i, if there exists a ∈ E1 such that ρ(a) > 0 and D(a) = {i},
then vi > ui(ŝ(i)),

(s-iii) for any i, if there exists a ∈ E2 such that ρ(a) > 0 and i ∈ Dw (a),
then vi > ui(ŝ(i)), and

(s-iv) for any a ∈ E2 such that ρ(a) > 0 and any k ∈ SD(a), if there exists
â ∈ E such that ρ(â) > 0 and âk �= ak, then there exists such an â
that satisfies either â ∈ E2 or [â ∈ E1(k) and â′k �= ak] where â′k is a
better reply that satisfies (1-iii) with respect to â.

Note that in (s-iii), i is not required to be an associated player. Condi-
tion (s-iv) says that if there exists a player k who plays her dominant action
in some a ∈ E2 in the support of ρ but does not play it in some â ∈ E in
the support, then either there exists such an â in E2, or there exists such
an â ∈ E1(k) such that an associated better reply that satisfies (1-iii) is not
the dominant action of the player. This technical condition is irrelevant for
many cases. For example, if no one plays her dominant action (if any) in
the support of ρ, then (s-iv) is trivially satisfied. Note also that if two or
more players have a dominant action in the stage game, then E1 is empty
by (1-ii) and therefore (s-iv) holds for any ρ.

Let V ∗ ⊆ V denote the set of supportable payoff vectors with respect to
a given penal code (ŝ(i))n

i=1.
7

7When the penal code is understood, we simply call V ∗ the set of supportable payoff
vectors.
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4 A Characterization of Equilibrium Payoff Vec-
tors

We are now ready to state our main result, which gives a sufficient condition
for a given payoff vector to be approximated by a sequential equilibrium
when the observation costs (λi)n

i=1 are sufficiently small and the discount
factors (δi)n

i=1 are sufficiently close to one.

Proposition 1 Let (ŝ(i))n
i=1 be a penal code and V ∗ be the set of supportable

payoff vectors with respect to the penal code. Then for any v ∈ V ∗ and any
ε > 0, there exist λ̄ = (λ̄i)n

i=1 ∈ R
n
++ and δ = (δi)n

i=1 ∈ (0, 1)n such that, for
any game Γ(δ, λ) with δ ≥ δ and λ ≤ λ̄, there exists a sequential equilibrium
σ∗ that satisfies |gi(σ∗) − vi| < ε for any i.

Proof. See the Appendix.

While the proof in the Appendix provides a general construction of an
equilibrium that approximates a given supportable payoff vector, we here
give its main idea, restricting ourselves to special examples of supportable
payoff vectors. Let us begin with the simplest case, which is to approximate
a payoff vector that is equal to u(a) for some a ∈ E2 such that Dw (a) =
{1, 2, . . . , n}. Since a ∈ E2, there exist a pair of associated players {i, j} =
AP(a) and better replies {a′i, a′j} of them such that (2-i)–(2-iii) hold. Since
Dw (a) = {1, 2, . . . , n}, supportability implies vk > uk(ŝ(k)) for all k. Thus
the penal code Nash equilibrium for player k, ŝ(k), indeed makes k suffer.

To simplify our exposition, we call action ak “cooperation,” action a′k
given by (2-ii) “minor-deviation,” and any other action “major-deviation.”
Note that only the associated players {i, j} = AP(a) can minor-deviate.

We construct a strategy profile that uses n + 1 states. The set of states
is {0, 1, . . . , n}. State 0 is regarded as the cooperative state, in which (i)
each player k ∈ {i, j} randomizes between cooperation and minor-deviation,
where the probability of cooperation is sufficiently close to 1, (ii) all other
players k /∈ {i, j} cooperate, and (iii) all players monitor the other players.
On the other hand, in state i ≥ 1, player i is punished; the players play ŝ(i)
and no one monitors the others.

We now specify the rule that governs the transition of states. The initial
state is 0 (cooperative state). If the state is 0 in period t − 1, then period t
is in

(i) state k if player k ∈ {1, . . . , n} is the only player who major-deviated,
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(ii) state k if player k ∈ {i, j} minor-deviated and all other players coop-
erated, and

(iii) state 0 otherwise.

For any k ≥ 1, if the state moves to k because of a unilateral major-deviation
of player k (case (i)), then the state remains k for all subsequent periods.
On the other hand, if the state moves to k because of a unilateral minor-
deviation of player k ∈ {i, j} (case (ii)), then state remains k for a certain
number of periods and then moves back to 0. The length of the k-state
periods is set so that the gain from the minor-deviation is exactly equal to
the loss from playing ŝ(k). Since uk(a) > uk(ŝ(k)), the appropriate length of
the k-state periods can be found if the players are sufficiently patient. Since
the appropriate length is not necessarily an integer, the public randomiza-
tion device is used to make the transition from state k to 0 contingent on
sunspots. Moreover, since when the state moves back to 0 depends only
on sunspots, the state is common knowledge although the players do not
monitor each other during the punishment periods.

This specification is sufficient to determine what happens on the path.
Since the players cooperate with a probability sufficiently close to 1, the
path approximates the payoff vector u(a) as long as the observation costs
are sufficiently small. Note that the above specification also determines
the continuation play at off-the-path histories if the player did not deviate
in terms of monitoring in the previous periods (since then she knows the
state). To define the equilibrium strategy formally, it remains to specify
how a player behaves after she deviates in terms of monitoring. However,
since this specification does not affect the following argument, we do not
complete the specification of strategy here.

Let us now examine the incentive to follow the state-dependent play de-
scribed above. First, for δ sufficiently close to the unit vector, no player has
an incentive to major-deviate in state 0. This is because uk(a) > uk(ŝ(k))
for all k and once player k major-deviates, the resulting outcome is the
perpetual play of ŝ(k). Second, players k ∈ {i, j} are indifferent between
cooperation and minor-deviation because of the way in which the number
of k-state periods is set. Third, in state k ≥ 1, no player has an incentive to
deviate in terms of action or monitoring since (i) a stage game Nash equilib-
rium is played, (ii) the play does not affect the transition of the state, and
(iii) no monitoring is required.

The remaining step is to examine the monitoring incentive in state 0.
We start with players k /∈ {i, j}. Suppose that the state was 0 in period t
and player k /∈ {i, j} did not monitor at the end of the period. Then,
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in period t + 1, she is uncertain about the state, which is either 0, i, or j
depending on whether i or j (or both) minor-deviated in period t. By (2-iii),
playing ak in period t + 1 is not optimal if the state is either i or j. On the
other hand, if player k plays an action other than ak in period t+1, the action
is considered as a major-deviation and triggers a perpetual punishment if
the state is actually 0. Therefore, if λk is sufficiently small, the gain from
eliminating the uncertainty exceeds the cost of monitoring.

Let us now consider a player k ∈ {i, j}. Without loss of generality, let
k = i. Suppose that the state was 0 in period t and player i did not monitor
at the end of the period, so i is uncertain about the state in period t + 1.
First, consider the case in which player i cooperated in period t. Then the
state in period t + 1 is either j or 0 depending on the action of player j
in period t. Thus, if i cooperates or minor-deviates in period t + 1, then
by (2-ii), the action is suboptimal if the state is j. On the other hand,
if i major-deviates in period t + 1, a perpetual punishment follows if the
actual state is 0. Hence, player i suffers strictly from the uncertainty and
it is optimal for her to eliminate the uncertainty if her monitoring cost is
sufficiently small.

Let us now consider the case when player i minor-deviated in period t.
Then the state in period t + 1 is either i or 0; the latter occurs if j also
minor-deviated. Since the latter case occurs with a small probability, the
state in period t + 1 is almost surely i, so by (2-ii), it is suboptimal for i to
either cooperate or minor-deviate in period t + 1. However, if she chooses
an action other than cooperation and minor-deviation in period t + 1, then
it is regarded as a major-deviation if the state in this period is actually 0,
which occurs with a small but positive probability. Thus, player i suffers
strictly from the uncertainty, which she is willing to avoid if her monitoring
cost is sufficiently small.

In this way, we can prove that it is not profitable for players to devi-
ate in terms of monitoring (on the path). This together with the previous
arguments shows that the state-dependent play is an equilibrium when the
players are patient and monitoring costs are small.

It is less straightforward to approximate other supportable payoff vec-
tors. For example, let us consider a payoff vector that is equal to u(a) for
some a ∈ E1. By (1-i), only one player has a short-run incentive to deviate
from a. The state-dependent play described above cannot be used since it
requires two players to minor-deviate (to give monitoring incentives to each
of them). Therefore, we consider a different type of behavior in this case.
Specifically, in the cooperative state, the player i such that D(a) = {i}
randomizes between cooperation and minor-deviation and does not monitor
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the other players, while all other players cooperate and monitor the others.
The state transition is specified similarly. Then, all agents j �= i have a
monitoring incentive in the cooperative state since the future play is either
to cooperate or to punish i and the state transition depends on i’s action.
On the other hand, since the state transition depends only on i’s action, i
can identify the current state even if she does not monitor the other players.
Thus, at equilibrium, the state is common knowledge among the players
although not all players observe the past actions.

The construction of an equilibrium is more complicated if the payoff
vector to be approximated can be generated only by a randomization among
elements of E1 and E2, or when some players play a dominant action in the
cooperative stage. We deal with these cases in the Appendix.

A final remark on Proposition 1 is that if the players use sunspots wisely,
many other payoff vectors can be approximated. Let NE ∗(G) be the set of
Nash equilibrium payoff vectors of G. Then it is easily seen that any payoff
vector in the convex hull of V ∗ ∪ NE ∗(G) can be approximated. Moreover,
as we vary the penal code (ŝ(i))n

i=1, we obtain different V ∗ and therefore
different V ∗ ∪NE ∗(G), and all elements of those sets can be approximated.
Thus, if G has a number of Nash equilibria, the set of payoff vectors that
our construction can approximate can be large.8 In the next section, we
demonstrate that the set is indeed large and yields an approximate Folk
Theorem.

5 Application: Approximate Folk Theorem

This section examines three examples and shows that Proposition 1 gener-
ates an approximate Nash Folk Theorem in each of the examples. In these
examples, we consider a penal code in which the same Nash equilibrium is
used for all players. Denoting the stage Nash equilibrium by ŝ, we will show
that all efficient payoff vectors that Pareto-dominate u(ŝ) are supportable
with respect to ŝ. Then, Proposition 1 proves that all those payoff vectors
are approximated by equilibria if the monitoring costs are sufficiently small.
Since sunspots are available, all interior payoff vectors that Pareto-dominate
u(ŝ) are also attainable as equilibria. In this way, we obtain an approximate
Nash Folk Theorem. A minimax version of approximate Folk Theorem may
also hold if, in addition, ui(ŝ) is the minimax value of player i for all i.
We indeed obtain an approximate minimax Folk Theorem in the example of

8Furthermore, there may be payoff vectors that can be supported by other strategy
profiles than the ones we consider in this paper.
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linear partnership examined below.

5.1 A Variant of Prisoners’ Dilemma

We begin our discussion with the following standard prisoners’ dilemma.

C D
C 1, 1 −1, 2
D 2,−1 0, 0

If this is the stage game, then our construction of strategy profile cannot
support cooperation. Indeed, since the Nash equilibrium is unique, the only
possible penal code is ŝ(1) = ŝ(2) = (D, D). Then, (C, C) violates (1-i) and
(2-ii). Condition (2-ii) is simply impossible to satisfy if there are only two
actions. Similarly, (C, D) and (D, C) violate (1-ii) and (2-i). Thus E1 and
E2 are empty for the prisoners’ dilemma.

On the other hand, the result changes considerably if the stage game
has a slightly larger action set. For prisoners’ dilemma, our construction
can easily support cooperation if each player has another action. This is
illustrated by the following stage game.

C D E
C 1, 1 −1, 2 −1,−1
D 2,−1 0, 0 −1,−1
E −1,−1 −1,−1 0, 0

This is a simplified version of the bilateral trade game with moral hazard in
Bhaskar and van Damme (2002). This game has two pure Nash equilibria,
(D, D) and (E, E), as well as a mixed Nash equilibrium, s, where each player
randomizes between D and E with equal probabilities. Clearly, C is strictly
dominated, and (C, C) Pareto-dominates all Nash equilibria.

We present an approximate Nash Folk Theorem for the expanded pris-
oners’ dilemma. We set ŝ(1) = ŝ(2) = (E, E) as a penal code. Then, since
neither C nor D is a best response to E, we have (C, C) ∈ E2. Further-
more, since D is a unique best response to C, we also have (C, D) ∈ E1 and
(D, C) ∈ E1. Since no player has a dominant action, Condition (s-iv) of
supportability holds trivially. Since (C, C), (D, C), and (C, D) are the only
efficient action profiles, any efficient payoff vector that Pareto-dominates
(0, 0) is supportable and therefore approximated by an equilibrium. Thus
an approximate Nash Folk Theorem holds.

However, this is not an approximate minimax Folk Theorem since the
minimax value in this game is −1/2 for each player. The fact that the
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minimax value is attained by the mixed Nash equilibrium s does not enable
us to prove a minimax Folk Theorem. Indeed, if we set ŝ(1) = ŝ(2) = s
as a penal code, then E1 and E2 are both empty, and so is the set of
supportable payoff vectors with respect to the penal code. This argument
also demonstrates that the set of supportable payoff vectors depends on the
penal code.

5.2 Linear Partnership Games

This subsection further explores the idea that our construction of strategy
profile can support cooperation if the action space is sufficiently rich. We
consider a class of linear partnership games where each game is parame-
terized by the richness of action set. The assumption of linearity plays an
important expositional role; it ensures that the set of feasible payoff vectors,
V , does not depend on the richness of action set. At the cost of complication,
the idea can be extended to more general games of partnership.

The linear n-player partnership game is defined as follows. There are
n players, and each player has m+1 actions where m ≥ 2. The set of actions
for each player is Ai = {0, 1/m, . . . , (m−1)/m, 1}. The production function
is linear and given by f(a) =

∑n
i=1 ai. Let ci(ai) = αai be the cost that

player i has to pay if she chooses ai. The output is divided equally among
the players. Player i’s payoffs are therefore ui(a) = (1/n)

∑n
k=1 ak−αai. We

impose the non-triviality assumption that 1/n < α < 1. This implies that
ai = 0 is a dominant action for each player, while (1, 1, . . . , 1) is the efficient
action profile. Hence, this game is also a variant of prisoners’ dilemma.
Note also that any ai ≥ 1/m is strictly dominated by ai − (1/m). The
minimax value for each player is 0, which is attained in the unique Nash
equilibrium s0 = (0, . . . , 0), independently of m.

Since the partnership game has a unique Nash equilibrium, the only
possible penal code is ŝ(i) = s0 for all i. With respect to the penal code,
E1 = ∅ by (1-ii). This implies that (s-iv) holds trivially. On the other hand,
E2 is characterized as follows.

Proposition 2 E2 = {a ∈ A : ∃i, j �= i s.t. min{ai, aj} ≥ 2/m}.

Proof. Let a ∈ A be such that min{ai, aj} ≥ 2/m for some i and j �= i.
Then, {i, j} ⊆ D(a), and for all k ∈ {i, j}, 1/m ∈ Bk(a) \ {0}. For all
k /∈ {i, j} ∪ SD(a), ak ≥ 1/m and hence ak /∈ BRk(s0). Therefore (2-i)–
(2-iii) hold and a ∈ E2.

To prove the converse, let a ∈ E2. Then there exist associated players i
and j �= i for whom there exist a′i ∈ Bi(a) \ {0} and a′j ∈ Bj(a) \ {0}. Hence
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min{ai, aj} ≥ 2/m. Q.E.D.

Let V̄ be the boundary of V , and VIR ⊆ V be the set of feasible payoff
vectors that are strictly individually rational, i.e., VIR = {v ∈ V : vi >
0 for all i}. Since payoff functions are linear, V , V̄ , and VIR are all in-
dependent of m. The following result proves that all feasible, boundary,
and strictly individually rational payoff vectors are supportable if m is suf-
ficiently large. In view of Proposition 1 and the availability of sunspots, the
result implies that if m is large, any v ∈ VIR can be approximated by an
equilibrium. Therefore, we have an approximate minimax Folk Theorem.

Proposition 3 If m ≥ 2/(nα − 1), any v ∈ VIR ∩ V̄ is supportable.

Proof. Assume m ≥ 2/(nα − 1) and let v ∈ VIR ∩ V̄ . Then there exists
a probability distribution on A, (ρ(a))a∈A, such that v =

∑
a∈A ρ(a)u(a).

Let ρ∗i =
∑

a∈A ρ(a)ai, which is the expected action level of player i. Since
v ∈ VIR ∩ V̄ , there exists a player i such that ρ∗i = 1 (otherwise, a Pareto
improvement can be achieved by multiplying everyone’s expected action
level by some β > 1). Without loss of generality, we assume ρ∗1 = 1. If∑

k≥2 ρ∗k < 2/m, then the expected utility of player 1 is

v1 = (1/n)
n∑

i=1

ρ∗i − α < (1/n)(1 + 2/m) − α ≤ 0,

where the last inequality follows from m ≥ 2/(nα − 1). The inequalities
imply that v is not strictly individually rational, a contradiction. Thus∑

k≥2 ρ∗k ≥ 2/m.
We have to show that there exists a probability distribution over E2

that generates payoff vector v. Since payoff functions are linear, it suffices
to prove that the convex hull of E2 includes ρ∗ = (ρ∗i )

n
i=1. To prove this, let

βH and βL be defined by

βH = 1/(max
k≥2

ρ∗k) ≥ 1, (2)

βL = (2/m)/
∑
k≥2

ρ∗k ≤ 1, (3)

where the inequality in (3) is proved in the previous paragraph. Let ρH , ρL ∈
[0, 1]n be defined by ρH

1 = ρL
1 = 1, and for all k ≥ 2, ρH

k = βHρ∗k and
ρL

k = βLρ∗k. Clearly, ρ∗ is a convex combination of ρH and ρL. By (2), ρH

has at least two components of 1. Thus, it follows easily from Proposition 2
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that ρH is in the convex hull of E2. We now prove that ρL is also in the
convex hull of E2. For each k ≥ 2, let ak ∈ A be the action profile defined by
ak

1 = 1, ak
k = 2/m, and ak

j = 0 for all j /∈ {1, k}. By Proposition 2, ak ∈ E2

for each k ≥ 2. By (3), ρL is a convex combination of (ak)k≥2 where the
weight assigned to ak is ρ∗k/(

∑
j≥2 ρ∗j ). Q.E.D.

5.3 Games with Utility Burning

The objective of this subsection is to demonstrate that an approximate Nash
Folk Theorem holds if the players are able to “burn” small amounts of their
own payoffs.

Let a stage game G = {n, A, (ui)n
i=1} be given. For a given number z > 0,

we define the game with z-utility burning as Gz = {n, A′, (u′
i)

n
i=1} where

A′
i = Ai ×{0, 1, 2} for each i, and for any action profile a′ = (ai, ki)n

i=1 ∈ A′,

u′
i(a

′) = ui(a) − kiz.

In this game, each player chooses an action and at the same time chooses
the amount of her payoffs to burn. It is assumed that a player can decrease
her payoffs without affecting the others’. We also assume that if a player
monitors the other players, she learns the amounts of payoffs that the other
players burnt.

It is easily seen that none of the Nash equilibria in Gz involves utility
burning. Note also that G and Gz have the same Pareto frontier. Moreover,
if we define V z = co{u′(a′) : a′ = (ai, 2)n

i=1}, then V z converges to V as
z → 0. Let us fix a penal code (in Gz), (ŝ′(i))n

i=1, arbitrarily and consider
an action profile a′ ∈ A′ of the form a′ = (ai, 2)n

i=1. Then for all i, we
have (ai, 1) ∈ Bi(a′) and for all j ∈ {1, . . . , n} and all k ∈ {1, 2}, (ai, k) /∈
BRi(ŝ′(j)), which implies a′ ∈ E2. Therefore, any v ∈ V z that Pareto-
dominates (ui(ŝ′(i)))n

i=1 is supportable.9 Hence, if the unit of utility burning,
z, is small, an approximate Nash Folk Theorem holds.10 Note that this result
holds for any game G.

6 Concluding Remarks

This section discusses possible extensions of our model.
9Since v is represented by a convex combination of elements of E2, Conditions (s-ii)

and (s-iv) hold trivially.
10However, to sustain cooperation, the observation costs have to be small in comparison

with the already small level of utility burning.
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6.1 Fixed Observation Costs

An important assumption in our characterization of equilibrium payoff vec-
tors and approximate Folk Theorems is that the observation costs are suffi-
ciently small. The results say nothing if the levels of observation costs are
fixed. A simple, alternative framework in which we can deal with fixed levels
of observation costs is one in which monitoring at the end of a period gives
information about not only the present period but all the previous periods.
This framework is a variation of that in Miyahara (2002), who examines
the case when at least the last two periods can be observed. However,
Miyahara’s efficiency result for repeated prisoners’ dilemma also requires
small observation costs.

When all previous periods are observable (with costs), we can use
Miyahara’s construction of strategy profile to support a large set of pay-
off vectors for fixed observation costs. To see this, assume that there exists
an action profile â that attains a given target payoff vector. Let us also
assume the existence of an action profile a in which there exist at least two
potential deviators, i.e., |D(a)| ≥ 2. As in our construction, select two play-
ers {i, j} ⊆ D(a) and call them the associated players. Then consider the
following strategy profile for a given T ∈ {2, 3, . . .}: (i) the players play â
in the first T − 1 periods without monitoring each other; (ii) in period T ,
the players play a, except that the associated players mix between a and
their minor-deviations, and all players monitor; (iii) the play in the next T
periods is either another sequence of (i) and (ii), or a repetition of a penal
code Nash equilibrium, depending on the presence of a deviator in the first
T periods, and so on.

Under the strategy profile, the players do not monitor the other players
in â state. But they have no incentive to deviate in terms of actions since
deviations are detected at least T periods later and regarded as major-
deviations. The incentive for monitoring in period T is guaranteed if for
each player k, âk is not a best response to the penal code Nash equilibria
designed for the associated players. Under this condition, the above strategy
profile constitutes an equilibrium and approximates the target payoff vector
for a given vector of observation costs if T is sufficiently large and discount
factors are close to 1.11

11In the strategy profile, the action profile is the same for the first T − 1 periods.
Alternatively, we could consider a strategy profile in which the action profile during these
periods is time-dependent. The advantage of using the larger class of strategy profiles is
that the corresponding condition on the relation between “â” and the penal code can be
weakened considerably.
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This construction for multi-period observation technology can sustain
cooperation even for stage games whose action sets are small. Indeed, the
stage game examined in Miyahara (2002) is the standard two-action prison-
ers’ dilemma and he obtains an efficiency result for the game.

In our future research, we will elaborate the strategy profile (along the
line mentioned in footnote 11) to obtain a characterization of payoff vectors
that can be approximated by equilibria and derive conditions on stage games
for which a Folk Theorem with fixed observation costs holds.

6.2 Timing of Receiving Payoffs

We have assumed that the players do not receive payoffs in each period
but they receive the total payoffs when the game ends. We need these
assumptions in order to keep consistency with the assumption that, without
paying monitoring costs, a player receives no information about the others’
actions. If payoffs are received in every period, then they generally provide
players with some information about the other players’ actions.

However, we can imagine a framework in which payoffs are received in
every period but monitoring remains important because realized payoffs are
only a noisy signal of the other players’ actions. For example, let a stage
game G = {n, A, (ui)n

i=1} be given. Suppose that at the end of each period,
player i receives payoffs of ui(a)+ εi if a ∈ A is played in that period, where
εi is a noise term which follows a normal distribution with mean 0. Assume
also that the noise terms are independent across the players.

In this formulation, the realized payoff is not a sure indicator of the
other players’ actions while it is informative. If we ignore the issue of costly
observation, the standard model of repeated games with imperfect private
monitoring (like Sekiguchi (1997)) falls into this category if the realized
payoff is a sufficient statistic of the privately observed signal about the other
players’ actions.

Even in this framework, we can use the state-dependent strategy profile
considered in Section 4. Under this strategy profile, players monitor each
other and do not use the information contained in the realized payoffs. The
monitoring incentive is weaker under this strategy profile since realized pay-
offs also give players information about the state. However, players who do
not pay observation costs are not able to determine the state with certainty.
Therefore, if the likelihood ratio of any pair of action profiles that generate
the same level of payoffs is bounded away from zero, then the players do
have an incentive to pay observation costs, given any payoff realization, if
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the observation costs are sufficiently small.12 Hence the basic idea of our
construction also applies to the case in which payoffs are received in each
period.

This observation is important because it suggests a possibility that costly
observation is one comprehensive solution to the private monitoring prob-
lem. The literature of repeated games with imperfect private monitoring
has shown difficulty in constructing a cooperative/efficient equilibrium, and
the existing positive results (reported in the papers cited in footnote 2) are
limited to simple specific games, e.g., repeated prisoners’ dilemma and its
variations.13 It is still unknown whether a Folk Theorem or an efficiency
result holds in general settings with private monitoring. In contrast, our
result and the above discussions show that an approximate Folk Theorem
does hold in general environments if the players have an ability to observe
the other players’ actions directly and the observation costs are sufficiently
small.

The literature also identifies communication among the players as a driv-
ing force to cooperation in general environments with private monitoring
(Compte (1998), Kandori and Matsushima (1998), and Aoyagi (2002)).14

Thus our analysis may as well be seen as demonstrating that costly obser-
vation is a convenient substitute for communication. This interpretation
has a strong implication on antitrust laws since they control communication
among firms in the belief that communication is a major tool that facilitates
cartels.

6.3 Partial Monitoring

The monitoring activity that we have considered has a binary aspect in that
each player has to decide whether to obtain complete information about the
action profile of the other players in the period or to obtain no information.

A more realistic formulation is that each player can choose to what
extent she observes the other players’ actions, and the more she spends for

12Precisely speaking, the likelihood ratio is not bounded away from zero when the noise
terms are normally distributed. However, the likelihood ratio is close to zero only at
the tails. Hence, we conjecture that there exists a cooperative equilibrium in which the
players monitor each other unless the realized payoffs take extreme values. Moreover, the
likelihood ratio condition can be satisfied for other specifications of the noise term.

13Mailath and Morris (2002) consider more general stage games, but they assume that
private signals are correlated across the players. Amarante (2002) also conducts a general
analysis. For some negative results, see Matsushima (1991) and Compte (2002).

14See also Ben-Porath and Kahneman (1996) for the role of communication in related
environments with private monitoring.
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monitoring, the more information she obtains. For example, suppose that
λi is the unit monitoring cost and player i incurs the cost of mλi if she
monitors m of the other players. This alternative framework is relevant in
the price-setting oligopoly if the goods are sold at each firm’s own outlet.
In this framework, each firm decides the set of firms to monitor and the
total observation cost depends on the number of firms to monitor. Such
partial monitoring is relevant even in the case of duopoly if the firms operate
in multiple markets. In this case, each firm decides the set of markets to
monitor, and the total observation cost depends on the number of markets to
monitor. Thus the price-setting oligopoly is a prominent example of partial
monitoring since the firms often compete in a large number of dimensions.
As Stigler (1964) concluded, collusion is hard to implement since it requires
an ability to detect any possible secret price-cuts in any market.

In general, partial monitoring is relevant whenever the action profile of
n − 1 players is multi-dimensional (this is trivially the case when n ≥ 3)
and a player can choose to observe only a subset of the coordinates in the
profile of the other players’ actions. A basic difficulty in analyzing the case
when partial monitoring is feasible is that the players have an incentive to
economize on observation expenses by not monitoring some of the players
(or markets). In the strategy profile used in our proof, some of the players
do not randomize in the cooperative state, but this is not a problem in the
proof since these players are also monitored by the other players. Under the
binary nature of our monitoring technology, any player who has an incentive
to monitor at least one of the other players has no choice but to monitor
all other players. However, if partial monitoring is feasible, players would
monitor only those who randomize, but then deviations of non-randomizing
players are not detected. Therefore, if partial monitoring is feasible, the
cooperative equilibria that we constructed are upset.

Nevertheless, our construction can be modified to deal with partial mon-
itoring if the payoff vector to be approximated can be generated by action
profiles in which all players have proper minor-deviations. Formally, let a
stage game G and a penal code (ŝ(k))n

k=1 be given. Let En ⊆ A be the set
of all a ∈ A such that

(n-i) D(a) = {1, 2, . . . , n},
(n-ii) for each player i, there exists a′i ∈ Bi(a) such that

{ai, a
′
i} ∩

[
∪n

k=1BRi(ŝ(k))
]

= ∅.
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It is then not very difficult to see that for all a ∈ En, if ui(a) > ui(ŝ(i))
for all i, then u(a) can be approximated by an equilibrium, in which all
players randomize between ai and a′i in the cooperative state. Thus, any
convex combination of such u(a)’s can be also approximated. We have seen
in Subsection 5.2 that the finer the action set is, the more payoff vectors
are approximated using action profiles where all players have short-run in-
centives to deviate. Therefore, our result extends to the case of partial
monitoring when the underlying strategic situation involves sufficiently fine
action sets.

This idea also applies to the case of duopoly with multiple markets. If a
price profile is such that each firm has a short-run incentive to deviate in ev-
ery market, then the price profile can be supported by an equilibrium where
the firms randomize between cooperation and minor-deviation in every mar-
ket. Again, if the price space is sufficiently fine, many levels of collusion can
be sustained, so an approximate Folk Theorem will be obtained.

6.4 Finite Repetition

Assuming that the horizon is finite has both an advantage and a disadvan-
tage. An advantage is that the finite horizon makes it easier to interpret
the assumption that the payoffs are received in total at the end of the re-
peated game. A disadvantage is that the finite horizon makes cooperation
unsustainable if the stage game has a unique equilibrium.

On the other hand, it might be possible to obtain an approximate Folk
Theorem under a finite horizon if the stage game has multiple equilibrium
payoffs for each player as in Benoit and Krishna (1985). We conjecture that
if the number of periods is sufficiently large, an action profile that Pareto-
dominates a stage-game equilibrium can be sustained in early periods. This
is another topic of our future research.
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Appendix: Proof of Proposition 1

Let v ∈ V ∗ and ε > 0. Since v is supportable, there exists a probability
distribution on E, denoted (ρ(a))a∈E , such that (s-i)–(s-iv) hold. Let us
define E∗

1(i) = {a ∈ E1 : ρ(a) > 0 and D(a) = {i}}, E∗
1 = ∪iE

∗
1(i), E∗

2 =
{a ∈ E2 : ρ(a) > 0}, and E∗ = E∗

1 ∪ E∗
2 . Thus, E∗ is the support of ρ.

We can choose a sufficiently small ε > 0 so that for all players i, if there
exists a ∈ E∗ such that either [a ∈ E1 and D(a) = {i}] or [a ∈ E2 and
i ∈ Dw (a)], then vi − ε > ui(ŝ(i)). This is possible since v is supportable.

Let SD∗ = {i : i ∈ SD(a) ∀a ∈ E∗} be the set of players i such that
for all a, â ∈ E∗, ai = âi and it is the strictly dominant action for i.

For each i and a ∈ E∗
1(i), fix a′i ∈ Bi(a) such that (1-iii) and (s-iv) hold.

Similarly, for each a ∈ E∗
2 , we fix a′i ∈ Bi(a) and a′j ∈ Bj(a) that satisfy

(2-ii), where {i, j} = AP(a).
Since G is a finite game, there exists ζ̄ ∈ (0, 1) such that for all a ∈ E∗

1 ,
(1-iii) holds with ζ = ζ̄, and for all a ∈ E2 and all k /∈ Dw (a),

{ak} = BRk((1 − ζ̄)ai + ζ̄a′i, (1 − ζ̄)aj + ζ̄a′j , a−i−j), (4)

where {i, j} = AP(a). Note that these conditions also hold when ζ̄ is
replaced with any ζ ∈ [0, ζ̄).

Let η ∈ [0, ζ̄], λi ≥ 0, and δi ∈ (0, 1) for all i. For any a ∈ E∗ and any
k ∈ AP(a), we define a mixed action aη

k as

aη
k = (1 − η)ak + ηa′k,

with the obvious interpretation that aη
k assigns probability 1 − η to ak and

the remaining probability to a′k. We now define the following vectors and
numbers: V 0 ∈ R

n, V 0(a) ∈ R
n, V k(a) ∈ R

n, and νk(a) ∈ (0, 1) for any
a ∈ E∗ and any k ∈ AP(a). We define them as a solution of the following
system:

V 0 =
∑

a∈E∗
ρ(a)V 0(a); (5)

V 0
i (a) = (1 − δi)ui(a) + δiV

0
i (6)

= (1 − δi)ui(a′i, a−i) + δiV
i
i (a) (7)

for any i and any a ∈ E∗
1(i);

V 0
k (a) = (1 − δk)

[
uk(a

η
i , a−i) − λk

]
+ δk

[
(1 − η)V 0

k + ηV i
k (a)

]
(8)
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for any i, any a ∈ E∗
1(i), and any k �= i;

V i(a) = [1 − νi(a)]u(ŝ(i)) + νi(a)V 0 (9)

for any i and any a ∈ E∗
1(i);

V 0
i (a) = (1 − δi)

[
ui(a

η
j , a−j) − λi

]
+ δi

[
(1 − η)V 0

i + ηV j
i (a)

]
(10)

= (1 − δi)
[
ui(a′i, a

η
j , a−i−j) − λi

]
+ δi

[
(1 − η)V i

i (a) + ηV 0
i

]
(11)

and

V 0
j (a) = (1 − δj)

[
uj(a

η
i , a−i) − λj

]
+ δj

[
(1 − η)V 0

j + ηV i
j (a)

]
(12)

= (1 − δj)
[
uj(a′j , a

η
i , a−i−j) − λj

]
+ δj

[
(1 − η)V j

j (a) + ηV 0
j

]
(13)

for any a ∈ E∗
2 and the associated players {i, j} = AP(a);

V 0
k (a) = (1 − δk)

[
uk(a

η
i , a

η
j , a−i−j) − λk

]

+ δk

{[
(1 − η)2 + η2

]
V 0

k + η(1 − η)
[
V i

k (a) + V j
k (a)

]}
(14)

for any a ∈ E∗
2 , any k /∈ AP(a) ∪ SD∗, and {i, j} = AP(a);

V 0
k (a) = (1 − δk)uk(a

η
i , a

η
j , a−i−j)

+ δk

{[
(1 − η)2 + η2

]
V 0

k + η(1 − η)
[
V i

k (a) + V j
k (a)

]}
(15)

for any a ∈ E∗
2 , any k ∈ SD∗ (note that AP(a) ∩ SD∗ = ∅ by (2-i)), and

{i, j} = AP(a); and

V k(a) = [1 − νk(a)]u(ŝ(k)) + νk(a)V 0 (16)

for any a ∈ E∗
2 and any k ∈ AP(a).

Regarding system (5)–(16), we prove the following lemma.

Lemma 1 There exist η̂ ∈ (0, ζ̄], λ̂ > 0, κ̂ > 0, and δ̂ ∈ (0, 1) such that

(i) System (5)–(16) has a solution if η ≤ η̂, λi ≤ λ̂, and δi ≥ δ̂ for any i.

(ii) The solution satisfies

|V 0
i − vi| < ε (17)

for any i, and

1 − νk(a)
1 − δk

> κ̂ (18)

for any a ∈ E∗ and any k ∈ AP(a).
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Proof. We first examine system (5)–(16) when η = λi = 0 for any i. By
(5), (6), (8), (10), (12), (14), and (15), any solution satisfies

V 0
i = vi (19)

V 0
i (a) = (1 − δi)ui(a) + δivi

for any a ∈ E∗ and any i. Therefore, (6), (7), and (9) reduce to

(1 − δi)
[
ui(a′i, a−i) − ui(a)

]
= δi(1 − νi(a))

[
vi − ui(ŝ(i))

]
(20)

for any i and a ∈ E∗
1(i). Since v is supportable, vi > ui(ŝ(i)). Since

a′i ∈ Bi(a), (20) has a unique solution νi(a) ∈ (0, 1) if δi is sufficiently close
to 1. By (9) and (19), this solution uniquely determines V i(a). Furthermore,
(20) yields

1 − νi(a)
1 − δi

>
ui(a′i, a−i) − ui(a)

vi − ui(ŝ(i))
. (21)

Similarly, for any a ∈ E∗
2 , (10)–(13) and (16) reduce to

(1 − δk)
[
uk(a′k, a−k) − uk(a)

]
= δk(1 − νk(a))

[
vk − uk(ŝ(k))

]
(22)

for all k ∈ {i, j} = AP(a). Since {i, j} ⊆ D(a) and v is supportable,
vk > uk(ŝ(k)) for all k ∈ {i, j}. Since a′k ∈ Bk(a) for all k ∈ {i, j}, (22) has
a unique solution (νi(a), νj(a)) ∈ (0, 1)2 if δi and δj are both sufficiently close
to 1. By (16), the solution uniquely determines V i(a) and V j(a). Moreover,
(22) yields

1 − νk(a)
1 − δk

>
uk(a′k, a−k) − uk(a)

vk − uk(ŝ(k))
(23)

for all k ∈ AP(a).
Hence, if η = λi = 0 for all i, then there exists δ̂ ∈ (0, 1) such that if

δi ≥ δ̂ for all i, then system (5)–(16) has a unique solution satisfying (17).
Moreover, if we choose

κ̂ = (1/2) min
a∈E∗

k∈AP(a)

[uk(a′k, a−k) − uk(a)
vk − uk(ŝ(k))

]
> 0,

then (21) and (23) imply that (18) holds for all a ∈ E∗ and all k ∈ AP(a).
By the standard continuity argument, there exist η̂ ∈ (0, ζ̄], λ̂ > 0, and

δ̂ ∈ (0, 1) such that if η ≤ η̂, λi ≤ λ̂, and δi ≥ δ̂ for all i, then system
(5)–(16) has a nearby solution satisfying (17) and (18). Q.E.D.
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For any player k, if BRk(ŝ(i)) �= Ak for some i, then let

pk = min
{
uk(ŝ(i)) − uk(ak, ŝ−k(i)) :
i ∈ {1, . . . , n} and ak /∈ BRk(ŝ(i))

}
> 0.

That is, any player k who plays a suboptimal action against a penal code
Nash equilibrium loses at least pk in terms of per-stage payoffs.

For any player k, if k /∈ D(a) for some a ∈ E∗
1 , then let

rk = min
{
uk(a) − uk(âk, a−k) :
a ∈ E∗

1 , k /∈ D(a), and âk /∈ BRk(a)
}

> 0.

This means that if player k such that k /∈ D(a) for some a ∈ E∗
1 plays a

suboptimal action against a−k, then she loses at least rk in terms of per-stage
payoffs.

For any player k, if k /∈ (Dw (a) ∪ SD(a)) for some a ∈ E∗
2 , then let

qk = min
{
uk(a) − uk(âk, a−k) :
a ∈ E∗

2 , k /∈ (Dw (a) ∪ SD(a)), and âk �= ak

}
> 0.

Thus, if player k does not play ak against a−k, then she loses at least qk in
terms of per-stage payoffs.

Let ρ = mina∈E∗ ρ(a) and ∆i = maxa,a′∈A(ui(a) − ui(a′)). We then
choose η̄ ∈ (0, η̂], λ̄ = (λ̄i)n

i=1 ∈ (0, λ̂]n, and δ = (δi)n
i=1 ∈ [δ̂, 1)n that satisfy

the following inequalities:

(1 − δi + 2η̄)(∆i + λ̄i) ≤ δi(1 − η̄)2
[
vi − ε − ui(ŝ(i))

]
(24)

for any i such that vi − ε > ui(ŝ(i));

λ̄i ≤ δiρκ̂(η̄/2)(1 − η̄)pi (25)

for any i /∈ SD∗ such that BRi(ŝ(k)) �= Ai for some k;

(1 − δi)λ̄i ≤ δiρκ̂(η̄/2)
[
−(1 − δi + η̄)(∆i + λ̄i) + δi

[
vi − ε − ui(ŝ(i))

]]
(26)

for any i such that i ∈ AP(a) for some a ∈ E∗
2 ;

λ̄i ≤ δiρκ̂(1 − η̄)
[
(1 − η̄)ri − η̄∆i

]
(27)

for any i such that i /∈ D(a) for some a ∈ E∗
1 ; and

λ̄i ≤ δiρκ̂(1 − η̄)2
[
(1 − η̄)2qi − [1 − (1 − η̄)2]∆i

]
(28)
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for any i such that i /∈ (Dw (a) ∪ SD(a)) for some a ∈ E∗
2 .

Let us consider Γ(δ, λ) with δ ≥ δ and λ ≤ λ̄. Fix η ∈ [η̄/2, η̄] and
consider the system (5)–(16) associated with η, λ, and δ. By Lemma 1, the
system has a solution satisfying (17) and (18).

We now construct an equilibrium of Γ(δ, λ) that approximates v. We
start with describing the play on the path. The equilibrium play in each pe-
riod depends on the “state” of that period. The set of states is {0, 1, . . . , n}.
State 0 is called the “cooperative state,” while states i ≥ 1 are called “pun-
ishment states.” State i ≥ 1 is the state in which player i is punished.

The play in state 0 is determined by the “substate” of the period, which is
determined by the sunspot in that period. The set of substates is identified
with E∗, and each substate a ∈ E∗ is realized with probability ρ(a). In
substate a ∈ E∗

1(i), (aη
i , a−i) is played, while in substate a ∈ E∗

2 , aη =
(aη

i , a
η
j , a−i−j) is played where {i, j} = AP(a). In substate a ∈ E∗

1(i), all
players except for i monitor the other players. In substate a ∈ E∗

2 , all
players not in SD∗ monitor the other players. This describes the play in the
cooperative state. In state i ≥ 1, on the other hand, the players play ŝ(i)
and do not monitor the other players.

For future reference, given a-substate, we call action ai “cooperation,”
action a′i “minor-deviation,” and any other action “major-deviation.” Note
that, according to this terminology, only player i has a minor-deviation in
substate a ∈ E∗

1(i). Likewise, in substate a ∈ E∗
2 , only players i and j

associated with a can minor-deviate.
Next, we define the rule that determines the transition of states. The

initial state is 0 (cooperative). If period t− 1 is in state 0 and substate a ∈
E∗

1(i), then period t is in:

(i) state i if player i major- or minor-deviated in period t − 1,

(ii) state 0 otherwise.

Note that deviations of players j �= i are ignored. If period t−1 is in state 0
and substate a ∈ E∗

2 , then period t is in:

(i) state k if player k ∈ Dw (a) is the only player in Dw (a) who major-
deviated in period t − 1,

(ii) state k if player k ∈ {i, j} = AP(a) is the only player who minor-
deviated in period t − 1 and all other players in Dw (a) cooperated in
period t − 1,

(iii) state 0 otherwise.
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Note that, if a ∈ E∗
2 and the associated players i and j both minor-deviated,

then their deviations are ignored and the state remains 0. Any deviation of
player k /∈ Dw (a) is also ignored.

If the state changes to k because of player k’s major deviation, then the
state remains k in all subsequent periods. If the state changes to k because of
k’s minor deviation in a-substate, then the state remains k for τk(a) periods
irrespective of the actions during the periods. The state of the subsequent
period depends on the sunspot at the beginning of the period: with proba-
bility ξk(a), the state remains k for one more period and then moves back
to 0; with probability 1−ξk(a), the state moves back to 0 immediately. The
numbers τk(a) ∈ {0, 1, 2, . . .} and ξk(a) ∈ [0, 1) are determined uniquely by

(1 − ξk(a))δτk(a)
k + ξk(a)δτk(a)+1

k = νk(a), (29)

where νk(a) is the relevant part of the solution of (5)–(16).
Note that τk(a) = 0 is possible in the unique solution of (29). If this is

the case, then the state transition after player k’s unilateral minor-deviation
is that with probability 1− ξk(a), the state remains 0, and with probability
ξk(a), the state stays in k for one period and then moves back to 0.

A subtle issue that arises when τk(a) = 0 is that the players seemingly
need two sunspots: one that determines whether the state stays at 0 or moves
to k, and the other that decides, if the state remains 0, which element of
E∗ is played. However, a single sunspot suffices since one can always let a
sunspot play two roles at the same time.15

The above description specifies only the play on the path. However,
each player can follow the description as long as she does not deviate from
the description in terms of monitoring. To see this, note first that if the
current period is in a-substate of the cooperative state with a ∈ E∗

1(i), then
all players except for i monitor the other players, and the future state (on
the path) depends only on i’s action (recall that deviations by player j �= i
are ignored). Thus the state in the next period is common knowledge even
though player i does not monitor the other players. Second, if the current
period is in substate a ∈ E∗

2 and if SD∗ = ∅, then all players monitor each
other and the state in the next period is common knowledge. If SD∗ �= ∅,
then the future state is common knowledge only among the players outside
SD∗. However, this does not cause a problem since each player in SD∗ plays

15For example, suppose E∗ = {a′, a′′} and ρ(a′) = ρ(a′′) = 0.5. If τk(a) = 0 and
ξk(a) = 0.5, then after a minor deviation by player k in substate a, the players can
arrange the next-period play so that ŝ(k) is played if the sunspot is in [0, 0.5], a′ if it is in
(0.5, 0.75], and a′′ if it is in (0.75, 1].
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the (strictly) dominant action in all states, including the punishment states.
Thus, the players in SD∗ can play consistently with the above description
without knowing the state.16 Finally, if the current state is i ≥ 1, then the
future state depends only on sunspots and hence is common knowledge.

Let us define a strategy profile σ̂ which is consistent with the state-
dependent play described above. For each i, let Ĥi be the set of all histories
for player i such that i monitored the other players whenever it was pre-
scribed by the state-dependent play. Note that, as long as the players follow
the state-dependent play, any history on the path is in Ĥi. On the other
hand, Ĥi includes other histories as well. It includes histories in which some
player(s) (including i) deviated in terms of actions, and those in which i
monitored the other players when she was not required to. Anyway, at any
history ht

i ∈ Ĥi, player i knows the state and therefore can follow the state-
dependent play described above. For i /∈ SD∗, let σ̂i be a strategy that is
consistent with the above state-dependent play at any ht

i ∈ Ĥi. The behav-
ior at the remaining histories can be arbitrary. For i ∈ SD∗, let σ̂i be the
strategy in which i always plays the dominant action and never monitors the
other players. Then, σ̂ generates a path consistent with the state-dependent
play.

For σ̂ defined as above, (5)–(16) and (29) imply that

(i) V 0 is the expected payoff vector under σ̂,

(ii) V 0(a) is the expected continuation payoff vector at substate a, and

(iii) V i(a) is the expected continuation payoff vector if the previous period
is in substate a and player i unilaterally minor-deviates in that period.

We are now ready to prove the following:

Lemma 2 Strategy profile σ̂ is a Nash equilibrium of Γ(δ, λ) and satisfies
|gi(σ̂) − vi| < ε for any i.

Proof. The second part follows directly from (17). Hence, it suffices to
prove that σ̂ is a Nash equilibrium of Γ(δ, λ).

We first show that it is not profitable for any player i to major-deviate in
the cooperative state. To see this, note first that player i’s major-deviation
at substate a is not profitable in the short-run term if either a ∈ E∗

1(j) for
j �= i (by (1-iii) and η ≤ ζ̄) or a ∈ E∗

2 and i /∈ Dw (a) (by (4) and η ≤ ζ̄). In

16It is useful to note that if there exists a player in SD∗, then E∗
1 = ∅, since (1-i) and

(1-ii) cannot hold simultaneously.
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either case, a major-deviation is not profitable since it yields no gain in the
short run and does not change the future path. In any other case, we have
vi−ε > ui(ŝ(i)). In this case, if i major-deviates unilaterally, then the future
play is the infinite repetition of ŝ(i). While the major-deviation increases
the current period payoff at most by ∆i +λi (note that i can also deviate in
monitoring), the continuation payoff decreases at least by vi − ε − ui(ŝ(i)).
By (24),

(1 − δi)(∆i + λi) ≤ δi

[
vi − ε − ui(ŝ(i))

]
.

Therefore, a major-deviation does not pay.
By (6), (7), and (10)–(13), any player who can minor-deviate given a

cooperative substate is indifferent between cooperation and minor-deviation.
Thus, in the cooperative state, no player has an incentive to deviate in terms
of action. It is easy to see that, in state i ≥ 1, no player has an incentive to
deviate in terms of action or monitoring since a stage game Nash equilibrium
is played and the future state depends only on sunspots (until the state
moves back to 0). Thus, the proof is complete if we show that no player has
an incentive to deviate in terms of monitoring at any substate a of state 0.
We start with substates in E∗

1 .
Substates in E∗

1 . Let us examine the monitoring incentive in state 0 when
the substate is a ∈ E∗

1(i) for some i. In the substate, all players except for i
monitor the other players. Since the future play depends only on player i’s
action, player i has no incentive to monitor the others.

Consider player j �= i. Suppose that the substate was a ∈ E∗
1(i) in

period t and player j cooperated as prescribed by σ̂ but did not monitor the
other players. Then, in period t + 1, she is uncertain whether the state is 0
or i, since she does not know whether the action of player i in period t was
cooperation or minor-deviation. In what follows, we show that player j has
an incentive to eliminate the uncertainty if the observation cost is sufficiently
small.

If player i (and the others) cooperated in period t, then the state remains
cooperative in period t+1. The substate remains a with probability ρ(a) ≥
ρ, in which case the other players play (aη

i , a−i−j) again. On the other hand,
if player i minor-deviated in period t, then the other players play ŝ−j(i) in
period t+1 with a positive probability. More precisely, if τ i(a) ≥ 1, ŝ−j(i) is
played with probability 1. If τ i(a) = 0, then ŝ−j(i) is played with probability
ξi(a) and (aη

i , a−i−j) is played with the remaining probability. (29) tells us
that when τ i(a) = 0, ξi(a) is given by

ξi(a) =
1 − νi(a)

1 − δi
> κ̂, (30)
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where the inequality follows from (18).
Hence, if player j did not monitor the others at the end of period t,

then in period t + 1, with a probability no less than ρκ̂, she is in a situation
where she believes that the other players play ŝ−j(i) with probability η and
(aη

i , a−i−j) with probability 1− η. In this situation, since the state is either
i or 0 with substate a ∈ E∗

1(i), player j’s action in period t + 1 does not
change the future play. By (1-ii), player j has no action that is a (static) best
response against both ŝ−j(i) and a−j . If she plays an action âj /∈ BRj(ŝ(i)),
then she loses at least pj in the period if the other players coordinate on
ŝ−j(i), which occurs with probability η ≥ η̄/2 > 0. On the other hand, if she
plays âj /∈ BRj(a), then she loses at least rj if the other players coordinate
on a−j , which occurs with probability (1 − η)2 ≥ (1 − η̄)2 > 0.

Thus, by not monitoring the other players in period t, player j saves
λj ≤ λ̄j in the period but suffers an expected loss of at least

ρκ̂ min
{

(η̄/2)pj , (1 − η̄)
[
(1 − η̄)rj − η̄∆j

]}

in period t + 1 and possibly more in the future. By (25) and (27), the
deviation is not profitable.

Substates in E∗
2 . We now consider the cooperative state with substate

a ∈ E∗
2 . In this substate, σ̂ tells all players outside SD∗ to monitor the

other players. Let {i, j} = AP(a). We examine the monitoring incentive of
a given player k in the substate.

Case 1: k ∈ SD∗. Under σ̂, player k ∈ SD∗ plays the dominant action
ak in every period regardless of the state (note that the dominant action
must be played in any penal code Nash equilibrium). Since her play never
affects the future play of the other players, she has no reason to monitor the
other players.

Case 2: k /∈ Dw (a) ∪ SD(a). This implies that ak is a unique best
response to a−k while it is not the dominant action. Note that k /∈ AP(a).
Suppose that in period t, the substate was a and player k cooperated but
did not monitor. If the other players all cooperated or the associated players
{i, j} both minor-deviated, then with probability ρ(a) ≥ ρ, the other players
play aη

−k again in period t + 1. On the other hand, if either i or j (but not
both) minor-deviated, then ŝ−k(h) is played in period t + 1 where h ∈ {i, j}
is the minor-deviator.

By the same argument as above, if player k did not monitor the other
players in period t, then in period t + 1, with a probability no smaller than
ρκ̂, player k is in a situation where she believes that the other players play
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aη
−k with probability (1 − η)2 + η2, ŝ−k(i) with probability η(1 − η), and

ŝ−k(j) with probability η(1 − η).
In this situation, since the state is either i, j, or 0 with substate a,

player k’s action does not affect the future play. If player k plays ak, then
by (2-iii), she loses at least pk in the period if either the other players
coordinate on ŝ−k(i) or they coordinate on ŝ−k(j), each of which occurs
with probability η(1 − η) ≥ (η̄/2)(1 − η̄). On the other hand, if she plays
any other action, then she loses at least qk if the other players coordinate
on a−k, which occurs with probability [(1 − η)2 + η2](1 − η)2 ≥ (1 − η̄)4.

Therefore, by not observing the other players in period t, player k saves
λk ≤ λ̄k but suffers an expected loss of at least

ρκ̂ min
{

(η̄/2)(1 − η̄)pk, (1 − η̄)2
[
(1 − η̄)2qk − [1 − (1 − η̄)2]∆k

]}

in period t + 1 (in terms of stage-game payoffs) and possibly more in the
future. Therefore, by (25) and (28), the deviation is not profitable.

Case 3: k ∈ Dw (a)\{i, j}. Suppose that in period t, the state was 0 with
substate a, and player k ∈ Dw (a)\{i, j} cooperated but did not monitor the
other players. Then by a similar argument, it follows that in period t + 1,
with a probability no smaller than ρκ̂, player k is in a situation where she
believes that the other players play aη

−k with probability (1−η)2+η2, ŝ−k(i)
with probability η(1 − η), and ŝ−k(j) with probability η(1 − η).

We first show that, under the uncertainty, it is suboptimal for player k
to play any action a′′k �= ak. Indeed, she gains by choosing ak and monitoring
the other players. To see this, note first that playing ak and monitoring the
other players decreases the current payoff at most by ∆k +λk. On the other
hand, it does not decrease the continuation payoff if the state is either i or j.
If the state is 0 with substate a, which occurs with probability 1−2η(1−η),
then playing ak and monitoring the other players increases the continuation
payoff (from period t + 2 on) at least by

[1 − 2η(1 − η)]V 0
k + η(1 − η)[V i

k (a) + V j
k (a)] − uk(ŝ(k))

> [vk − ε − uk(ŝ(k))] − 2η(1 − η)(∆k + λk).

Therefore, by (24), the overall payoff evaluated at t+1 increases by playing
ak and monitoring the other players.

However, (2-iii) implies that playing ak in period t + 1 causes a loss of
at least pk to player k in the period if the state is either i or j, each of
which occurs with probability η(1 − η). Thus, by not monitoring the other
players in period t, player k saves λk ≤ λ̄k but suffers an expected loss of at
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least ρκ̂(η̄/2)(1 − η̄)pk in period t + 1 (in terms of stage game payoffs) and
possibly more in the future. Therefore, by (25), not monitoring in period t
is not optimal.

Case 4: k ∈ {i, j}. Without loss of generality, let k = i. We first
consider the case in which player i cooperated but did not monitor the
other players in period t. Then, again, with a probability no less than ρκ̂,
player i in period t + 1 is in a situation where she believes that the other
players play aη

−i with probability 1− η and ŝ−i(j) with probability η. Using
a similar argument and (24), it can be shown that, under the uncertainty, it
is suboptimal for i to play any a′′i /∈ {ai, a

′
i}. However, by (2-ii), playing ai or

a′i causes a loss of at least pi in the period if the other players coordinate on
ŝ−i(j). Therefore, by (25), not monitoring the other players is suboptimal.

We also have to consider the case in which player i minor-deviated and
then did not monitor the other players in period t. Then, in period t + 1,
player i is uncertain whether the state is i or 0; the latter occurs if j also
minor-deviated in period t. Then, by a similar argument, it follows that with
a probability no smaller than ρκ̂, player i in period t + 1 is in a situation
where she believes that the other players play ŝ−i(i) with probability 1 − η
and aη

−i with probability η. Under the uncertainty, if player i chooses an
action a′′i ∈ {ai, a

′
i}, then by (2-ii), it causes a loss of at least pi in the period

if the other players coordinate on ŝ−i(i). On the other hand, if she plays
any a′′i /∈ {ai, a

′
i}, it is regarded as a major-deviation if the other players

coordinate on (aη
j , a−j−i), which occurs with probability η.

Thus, if player i does not monitor the other players at period t, she
saves λi ≤ λ̄i in the period but the continuation payoff evaluated at period t
decreases at least by the minimum of the following values:

δiρκ̂(1 − η)(1 − δi)pi,

δiρκ̂η
[
−(1 − δi)(∆i + λi) + δi

[
ηV j

i (a) + (1 − η)V 0
i − ui(ŝ(i))

]]
.

The second value is greater than the right-hand side of (26). Therefore, by
(25) and (26), not monitoring at period t is suboptimal.

Case 5: k ∈ SD(a) \ SD∗. Then since k /∈ SD∗, there exist â ∈ E∗ such
that âk �= ak. By Condition (s-iv) of supportability, there exists such an
â that satisfies either â ∈ E∗

2 or [â ∈ E∗
1(k) and â′k �= ak], where â′k is the

minor-deviation from â for player k. As before, suppose that in period t, the
state was 0 with substate a and player k cooperated but did not monitor the
other players. Then, in the next period, with positive probability no smaller
than ρκ̂, the player is uncertain whether the state is 0 with substate â or is
either i or j. As before, we show that the loss that player k suffers from the
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uncertainty exceeds the monitoring cost. We distinguish the following two
cases.

First, consider the case when â ∈ E∗
2 . An argument similar to the previ-

ous ones can show that, under the uncertainty, choosing a major-deviation
from â is not optimal for player k. That is, it is suboptimal for her to play
a′′k /∈ {âk, â

′
k} if k ∈ AP(â) and a′′k �= âk if k /∈ AP(â). However, by âk �= ak

and (2-ii), neither âk nor â′k (if well defined) is the dominant action, and
therefore, playing either action causes a loss of at least pk in the period if the
other players coordinate on ŝ−k(i) or ŝ−k(j), which occurs with probability
2η(1 − η). Thus, the desired conclusion follows from (25).

Second, consider the case when â ∈ E∗
1(k) and â′k �= ak. A similar

argument shows that, under the uncertainty, a major-deviation from â is
not optimal for player k. But, since neither âk nor â′k is her dominant
action, playing either action causes a loss of at least pk in the period if the
other players coordinate on ŝ−k(i) or ŝ−k(j), which occurs with probability
2η(1 − η). Thus, the desired conclusion follows from (25).

These arguments prove that no player has an incentive to deviate in
terms of monitoring on the equilibrium path. Q.E.D.

The next lemma completes the proof of Proposition 1.

Lemma 3 There exists a sequential equilibrium in Γ(δ, λ) that generates the
same path as σ̂.

Proof. We start with the construction of a system of beliefs. First, consider
a sequence of totally mixed strategy profiles that converges to σ̂ and puts
far smaller weights on the trembles regarding monitoring, in comparison
with the trembles regarding actions. This generates a sequence of systems
of beliefs, whose limit is a system of belief that is consistent with σ̂ and such
that, at any history (on or off the path), each player believes that the other
players did not deviate in terms of monitoring. Let us denote the system of
beliefs by µ and let µ(ht

i) denote the belief of player i at history ht
i about

the other players’ (private) histories.
We now construct each player’s strategy, σ∗

i . For players i ∈ SD∗, we
simply set σ∗

i = σ̂i. For players i /∈ SD∗, we first set

σ∗
i (h

t
i) = σ̂i(ht

i) for any ht
i ∈ Ĥi. (31)

For any ht
i /∈ Ĥi, let σ∗

i (h
t
i) be an optimal continuation strategy at ht

i given
her belief µ(ht

i) and the other players’ strategies σ̂−i.
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(31) means that, for any player i, σ∗
i and σ̂i coincide at all histories ht

i

in which i never deviates in terms of monitoring. This together with the
construction of µ implies that µ is also consistent with σ∗.

We now verify sequential rationality. We start with a player i /∈ SD∗ and
a history ht

i ∈ Ĥi. At the history, player i knows the state. Moreover, by the
construction of µ, player i believes that the other players not in SD∗ also
know the state since i believes that these players never deviated in terms of
monitoring. In other words, i believes that any other player j /∈ SD∗ is at a
history in Ĥj and any other player j ∈ SD∗ plays her dominant action in all
subsequent periods. Then, by Lemma 2 and (31), it is optimal for player i
to follow the state-dependent play, i.e., σ̂i. By (31), this is exactly what σ∗

i

prescribes. Thus the continuation play of σ∗
i at history ht

i is sequentially
rational.

We now consider a player i /∈ SD∗ at a history ht
i /∈ Ĥi. We defined

σ∗
i (h

t
i) as an optimal continuation strategy at the history given that i’s belief

is µ(ht
i) and the other players follow σ̂−i (not σ∗

−i). Sequential rationality
then follows since player i believes that all other players j /∈ SD∗ are at
some histories ht

j ∈ Ĥj and therefore, by (31), their continuation strategies
coincide with σ∗

j (h
t
j).

Finally, consider player i ∈ SD∗. At any history, she believes that the
other players never deviated in terms of monitoring and thus she believes
that her play does not affect the future play. Thus, given σ∗

−i and µ, it is
sequentially rational for i to play a short-run best response at any history.
This is nothing but following σ∗

i .
Therefore, (σ∗, µ) is a sequential equilibrium of Γ(δ, λ). By (31), it

is outcome-equivalent to σ̂. This completes the proofs of the lemma and
Proposition 1. Q.E.D.
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