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Abstract

We consider the economic consequences of fairness concerns under the freedom
to choose the timing of moves by developing a new economic theory of leadership.
We study the prisoner’s dilemma in which players are endowed with Fehr and
Schmidt preferences with inequity aversion as their private information and then
choose cooperation or defection once at one of two timings that they prefer. In
this model, we consider an equilibrium in which a leader–follower relationship en-
dogenously emerges as a consequence of players’ heterogeneous inequity aversions.
We present three results. First, we provide a sufficient condition for the existence
of a leadership equilibrium. Then, we present a comparative statics analysis of
the equilibrium. Finally, we investigate who takes the leadership, depending on
the game parameters. We provide a characterization of the equilibrium leadership
patterns. These results also hold when agents can choose the timing of moves
from more than two timings.
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1 Introduction

1.1 Introduction

A considerable body of evidence by the experimental research in recent decades in-
dicates that many individuals are concerned with fairness (Fehr and Schmidt (2006),
Cooper and Kagel (2013)). This pushes economists towards examining how fairness
concerns affect the consequences of economic transactions. The research so far has
focused on the implications of the fact that fairness-concerned individuals may choose
different alternatives than self-interested individuals in exogenous move games.1 This
paper addresses another issue that fairness concerns may influence economic outcomes
for the reason that fairness-concerned individuals may choose to take actions at dif-
ferent timings than self-interested individuals when they have the freedom to choose
when to move.2

Economists recognize that fairness concerns can affect economic transactions through
time. For example, conditional cooperation is one of the central ideas that fairness con-
cerns could cause individuals to behave differently from self-interest (Gächter (2007)).
Timing is an essential element in the attitude paraphrased as “if you cooperate, I
will cooperate.” Researchers have found that a considerable percentage of people
exhibit the conditional cooperation attitude when placed in an “after you” position
(Fischbacher, Gächter and Fehr (2001), Herrmann and Thöni (2009)).

However, when agents have the freedom to choose when to move, the conditional
cooperation is in vain unless the “after you” position is realized as an equilibrium play.
Including conditional cooperation, it remains unexplored how fairness concerns affect
economic transactions by effectively changing individual behaviors taken within a span
of time under the freedom to choose when to move.

We develop a theory of one such mechanism. In particular, we consider the issue
of time and social dilemmas. We show that if agents are concerned with fairness,
the freedom to choose the timing of moves could resolve certain social dilemmas. If
individuals are concerned with fairness, conditional cooperation has the potential to
realize cooperation when they move sequentially. The issue is how to have agents move
sequentially under the freedom to choose the timing of moves and how to have an earlier
mover commit to cooperation, which is necessary for later cooperation by conditional
cooperators. We show that when agents are divergent in their fairness concerns and
there are enough conditional cooperators, they sort themselves into earlier and later
movers by their own will, and earlier movers commit to cooperation so that later

1Several alternative approaches to modeling fairness concerns have been proposed. One of the
promising models is that of Fehr and Schmidt (1999), which we employ in this paper. Studies of choice
based on this model under exogenously given sequences of moves extend to various fields, including
(1) ultimatum games (Fehr and Schmidt (1999)), (2) moral hazard (Fehr and Schmidt (2004), Itoh
(2004), Demougin and Fluet (2006), Demougin, Fluet and Helm (2006), Dur and Glazer (2008), Rey-
Biel (2008), Englmaier and Wambach (2010), Neilson and Stowe (2010)), (3) partnerships (Bartling
and von Siemens (2010a)), (4) teams (Li (2009)), (5) tournaments (Grund and Sliwka (2005), Bartling
and von Siemens (2010b), Dubey, Geanakoplos, and Haimanko (forthcoming)), (6) contract design
(Fehr, Klein, and Schmidt (2007)), (7) ownership (Fehr , Kremhelmer, and Schmidt (2008)), and (8)
adverse selection (Desiraju and Sappington (2007) and Rasch, Wambach, and Wiener (2012)).

2Time is an essential ingredient of many economic transactions. In many natural settings, agents
move without an order of moves being formally provided and the consequences of economic transactions
are critically influenced by the choice of timings of moves by the agents in equilibrium. Under the
classical assumption of self-interested agents, economists have explored how agents guide themselves
to move within a span of time and how the freedom to choose timings of moves affects the efficiency of
transactions. Examples are the English auction (Milgrom and Weber (1982)), bargaining (Perry and
Reny (1993)), and joint projects (Marx and Matthews (2000)).
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cooperation is realized by later movers who are conditional cooperators. This happens
because agents with different fairness concerns have different degrees of incentives to
induce conditional cooperation from others. Thus, fairness concerns play a double role
in resolving social dilemmas: the role of generating conditional cooperation and the
role of realizing the sequence of moves necessary for conditional cooperation to come
into effect through leadership.

In our analysis, we specifically consider the prisoner’s dilemma as a prototype
social dilemma. We hypothesize that a player has Fehr and Schmidt (1999) preferences
with inequity aversion over the outcomes of the prisoner’s dilemma. Furthermore, we
assume a variety of preferences among players, under which players may differ in their
sensitivities to inequity measured by an envy parameter α and a guilt parameter β.
We consider a Bayesian model of the prisoner’s dilemma with endogenous moves. A
player is endowed with his type, which is defined by his envy parameter and guilt
parameter (α, β). A type is a realization of a continuous random variable and it is
his private information. Each player must choose C (cooperation) or D (defection).
There are two timings for moves: timing 1 and timing 2. Each player makes his choice
between C and D once at one of the two timings and which timing he selects is at his
discretion.

We examine a particular Bayesian strategy, which we will call a three-mode strat-
egy. It divides player’s types into three categories: leader types, defector types, and
conditional cooperator types. A leader type chooses C at timing 1, whereas a defector
type and a conditional cooperator type wait.3 A defector type and a conditional co-
operator type differ in their responses to their opponent’s behaviors at timing 1. The
former chooses D irrespective of his opponent’s behaviors, while the latter responds to
C with C (and with D otherwise.)

If a three-mode strategy prevails as an equilibrium and a leader type is matched
with a conditional cooperator type, then the leader type commits to C at timing 1
and then the conditional cooperator type responds with C after postponing his choice
until timing 2. The cooperative outcome (C,C) is realized along an equilibrium path
by having players move sequentially by their own will. In this equilibrium, the on-path
behavior of the leader type is a leadership behavior (that is, a behavior of taking the
leadership).

We show three results. First, we present a sufficient condition over a set of payoff
parameters of a prisoner’s dilemma for a three-mode strategy to be a sequential equi-
librium of the game. The condition has a simple and straightforward interpretation;
a pure materialist who feels no envy and no guilt (α = β = 0) has an incentive to
lead by choosing C at timing 1 as long as he expects that his opponent postpones his
choice until timing 2 with certainty. For any prisoner’s dilemma that supports this
incentive, there exists a sequential equilibrium in a three-mode strategy, in which the
pure materialist himself may or may not become a leader type.

Second, we examine a comparative statics. Suppose that a payoff from the cooper-
ative outcome becomes higher or a payoff from the defection outcome (D,D) becomes
lower. Then, we can say that the cooperation becomes less difficult, because the in-
centive to choose D over C against an opponent’s choice of C is weaker under a higher
cooperative payoff; the incentive to choose D over C against an opponent’s choice of D
is weaker under a lower defection outcome payoff; and the degree of the Pareto improve-
ment from the defection outcome to the cooperative outcome is larger in either case.
We show that the leadership behavior is more likely to emerge in a prisoner’s dilemma

3As we mention in the Discussion section, a defector type does not need to wait in general. Here,
we consider the simplest case to illustrate our equilibrium strategy.
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with less difficulty of cooperation than in a prisoner’s dilemma with more difficulty.
Formally, the maximum value of the probabilities that the prior assigns to the leader
type in all the sequential equilibria in a three-mode strategy is higher in the prisoner’s
dilemma with less difficulty of cooperation than in the prisoner’s dilemma with more
difficulty.4 The same is true for the minimum value of the leader-type probabilities
under the sufficient condition for the existence of a three-mode equilibrium.

Third, we characterize our equilibrium in terms of who takes the leadership. We
introduce the notion of an incentive to lead and define a way to compare the strength
of the incentive to lead across types. A type (α, β) who has the strongest incentive to
lead is a representative type in the set of leader types in a given prisoner’s dilemma.
We identify the type who has the strongest incentive to lead, and we show how the type
varies according to a change in the parameters of the prisoner’s dilemma. The pure
materialist (α = β = 0) has the strongest incentive to lead in a prisoner’s dilemma
with a higher difficulty of cooperation, while a particular type who has modest fairness
concerns (modestly high α and β) has the strongest incentive to lead in a prisoner’s
dilemma with a lower difficulty of cooperation. Finally, we study how the whole set of
leader types vary according to a change in the parameters of the prisoner’s dilemma.
We show that, as the cooperation becomes less difficult, the set of leader types in a
corresponding prisoner’s dilemma consists of more fairness–concerned types.

Furthermore, we show that these three results also hold when agents can choose the
timing of moves from more than two timings. The mechanism of leadership elucidated
by our analysis is also valid and our conclusion on the resolution of social dilemmas
remains unchanged. Our theory of leadership applies to a prisoner’s dilemma with
many timings in general.

The main contribution of this paper is to consider the issue of time and social
dilemmas by taking into account the fact that many individuals are concerned with
fairness. Our theory is a first attempt to provide a mechanism by which fairness
concerns affect the consequences of economic transactions under the freedom to choose
the timing of moves.

Our theory advances our understanding of the role that fairness concerns play in
dynamic transactions. For example, recent experimental results indicate that some
social dilemmas could be resolved when individuals have the freedom to choose when
to move. Arbak and Villeval (2013) conduct experiments of two-stage voluntary con-
tribution games with a similar time structure to our game, in which each subject is
requested to make a choice of contribution level at one of two timings that he prefers.5

The data display that some of the subjects move with high levels of contributions in
advance of the others and some of those subjects who postpone their choices to timing
2 respond with high levels of contributions.6 In light of the importance for economists

4We show that there may exist multiple equilibria in a three-mode strategy, depending on a set of
payoff parameters.

5The game of Arbak and Villeval (2013) is a standard voluntary contribution game, in which payoffs
are symmetric across agents and zero contribution is the dominant strategy. This game involves a social
dilemma similar to the prisoner’s dilemma. Nosenzo and Sefton (2011), Rivas and Sutter (2011) and
Préget, Nguyen, and Willinger (2012) also conduct similar experiments. The results of Rivas and
Sutter (2011) and Préget, Nguyen, and Willinger (2012) are less relevant to this paper because they
use the repeated-game setting for their experiments. The experiments of Arbak and Villeval (2013)
and Nosenzo and Sefton (2011) are implemented in the stranger setting and so the subjects in the
experiments face a social dilemma game in the same setting as this paper. However, Nosenzo and
Sefton (2011) differ from Arbak and Villeval (2013) in that their game is a version of the Varian
(1994) game, in which payoffs are asymmetric across agents and there exists strategic substitution
effects.

6See Figure 1 and Table 3 in Arbak and Villeval (2013).
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to understand how human beings can and do overcome social dilemmas, their findings
urge economists to develop a theory that explains the role of the freedom to choose
the timing of moves in resolving social dilemmas. Our theory provides a possible
theoretical interpretation for what forces resolve the dilemma in their experiments be-
cause their findings are compatible with our equilibrium prediction for the prisoner’s
dilemma that leading by cooperation occurs with positive probabilities and respond-
ing to cooperation with cooperation occurs with positive probabilities, depending on
players’ types.

Our approach to the issue of time and social dilemmas has several features to be
noted. First, we employ the Fehr and Schmidt (1999) model for fairness concerns. This
model, which has proved powerful in explaining various experimental results, is one of
the simplest models proposed to express other regarding preferences. The tractability
of this model enables us to develop not only the condition for equilibrium existence (the
first result) but also two fundamental results: the comparative statics on leadership
probabilities (the second result) and the characterization of equilibrium in terms of
leader’s types (the third result). These results can be used to induce a set of testable
predictions or hypotheses based on our theory for the purpose of testing the theory
in future experiments. These results may also provide theoretical insights when one
considers the issue of time and other forms of social dilemmas.7

Second, we introduce incomplete information into fairness concerns by agents. If a
player knows that his opponent is endowed with the fairness concerns that make the
opponent a conditional cooperator, it is obviously in the interest of the player to lead
by taking C at timing 1 and induce the opponent to take C at timing 2. Therefore,
under complete information of fairness concerns by agents, there is no obstacle for
them to resolve a social dilemma by leadership.8 In reality, the way in which people
respond to leadership by others is diverse and it is often observed that a leadership is
betrayed by a follower with uncooperative behaviors. This makes it difficult for people
to resolve a social dilemma by leadership. How this obstacle is overcome by agents is
the central issue that must be studied to understand the mechanism by which fairness
concerns work in resolving a social dilemma under the freedom to choose the timing of
moves. Hence, it is essential for our theory to consider incomplete information about
fairness concerns by agents.

There are a few papers that discuss incomplete information under the Fehr and
Schmidt (1999) preferences. Fehr and Schmidt (1999), (2004), Fehr, Klein, and Schmidt
(2007), and Fehr, Kremhelmer, and Schmidt (2008) argue that their experimental find-
ings on the ultimatum, the multitask, the contract design, and the ownership games
can be explained if they assume that subjects are endowed with one of two or four kinds
of parameters in the Fehr and Schmidt (1999) preferences with particular probabilities,
and that a set of parameters for a subject is his private information.9

In contrast to these experimental studies, we examine the whole set of continuous
densities over the domain of the Fehr and Schmidt (1999) preferences. Then, we
develop our three results in terms of a set of payoffs and a density of the preferences.
As Fehr, Kremhelmer, and Schmidt (2008) state, the heterogeneity of fairness concerns
is a well–established fact and thus the question is not whether theory should incorporate

7For example, if we confine ourselves to prisoner’s dilemmas, we can show that very different
behaviors are realized in simultaneous moves and exogenous sequence moves. Our theory helps us
understand why and how they differ. See our Discussion.

8We will elaborate on this point in the Discussion.
9They conduct this exercise of choosing particular distributions because their purpose is to show

that the theory based on Fehr and Schmidt (1999) preferences helps us interpret and better understand
the observed data patterns. See footnote 16 in Fehr, Klein, and Schmidt (2007).
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heterogeneous social preferences but which distribution of preferences theory should
assume.10 In this respect, this paper is one of the first attempts to study games played
by Fehr–Schmidt players under general incomplete information and provide robust
results by associating them with conditions on type distribution.

Finally, our theory investigates a three-mode strategy that assigns three differ-
ent behavioral modes to the corresponding three classes of Fehr and Schmidt (1999)
preferences. The Fehr and Schmidt (1999) model is a very simple model with a two-
dimensional type space: envy parameter and guilt parameter. Fehr and Schmidt
(2004), Fehr, Klein, and Schmidt (2007), and Fehr, Kremhelmer, and Schmidt (2008)
successfully illustrate that even such a simple model is enough to explain the experi-
mental data for fairly complex games, such as the multitask, the contract design, and
the ownership with two behavioral modes corresponding to two classes of Fehr and
Schmidt (1999) preferences.

In our game, however, it can be shown that cooperation by leadership cannot
be supported in equilibrium if we confine a Bayesian strategy to a class that admits
only two behavioral modes. Our first result shows that the Fehr and Schmidt (1999)
model successfully generates three behavioral modes, which support the cooperation
in equilibrium. This indicates that in spite of its limited type space, the Fehr and
Schmidt (1999) model may be powerful and useful enough to explain diverse behaviors
in complex games.11

The rest of this paper is organized as follows. We review the related literature in
Subsection 1.2. Then, we begin our analysis in Section 2 with an illustrative numerical
example to demonstrate the idea of the leadership mechanism driven by fairness con-
cerns. Section 3 presents the formal model of the prisoner’s dilemma played through
two timings by players with inequity-averse preferences. Section 4 explains the no-
tion of a three-mode equilibrium in this game. Section 5 states the first result on
the existence of a three-mode equilibrium. Section 6 states the second result on the
comparative statics of the three-mode equilibrium. Section 7 states the third result on
the characterization of leadership patterns with respect to fairness concerns. Section 8
shows that the three-results developed in a prisoner’s dilemma with two timings also
hold in a prisoner’s dilemma with many timings in general. Section 9 discusses some
issues that we excluded from our analysis. Appendix A supplements Section 5 with
respect to the exact bound on the game parameters for the existence of a three-mode
equilibrium. Furthermore, when this exact bound applies, the results in Sections 6
and 7 become much sharper. Appendix B supplements Section 7 by showing that a
certain class of leader patterns is not supported in equilibrium by players with some
distribution of fairness concerns. Appendix C contains proofs.

1.2 Literature

There are many empirical studies showing that observed behaviors are inconsistent with
the classical assumption that all agents are self-interested. An agreed fact is that many
people are concerned with fairness and they are heterogeneous in fairness concerns.
For example, by conducting an Afriat–Diewert–Varian-type revealed preference test on
social outcomes, Andreoni and Miller (2002) verify it and in addition demonstrate that
most of the subjects, whether identified as self-interested or not, are consistent with the

10See footnote 16 in Fehr, Kremhelmer, and Schmidt (2008).
11An example of diverse behaviors is the behaviors observed in the ultimatum experiments. Fehr

and Schmidt (1999) argue that four classes of the Fehr and Schmidt (1999) preferences is enough to
explain the data.
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standard revealed preference paradigm.12 Such empirical studies have provoked the
development of various economics models that accommodate observed other-regarding
behaviors. Using those models, many researchers have studied how fairness concerns
affect economic outcomes in different environments. See Camerer (2003), Fehr and
Schmidt (2006), and Cooper and Kagel (2013) for a detailed survey of the empirical
and theoretical studies.

Among the models for studying fairness concerns, the outcome-based social pref-
erence models are most closely related to this paper. In the models, an agent with
particular fairness characteristics is modeled as a preference relation over social out-
comes. An altruism model (Andreoni and Miller (2002)) assumes that an agent’s
utility depends on the relevant agents’ material payoffs profile and is monotonically
increasing in the material payoff of the other agent.13 An envy model (Bolton (1991))
assumes that an agent’s utility depends on his material payoff and his relative payoff to
the other player’s payoff and that his utility is strictly increasing in his relative payoff
when it is smaller than 1 and otherwise constant in his relative payoff.14 These models
can capture agents’ unconditional reciprocal behavior and unconditional spiteful be-
havior, respectively, but not simultaneously. In contrast to these models, the Fehr and
Schmidt (1999) model of inequity aversion that we employ in this paper models the
two-dimensional aspect of social preferences.15 In particular, the two kinds of sources
of inequity aversions (envy and guilt) are treated separately. This enables us to explain
leadership by three different behavioral modes that human beings exhibit in a given
prisoner’s dilemma.16

Other than the outcome-based models of social preferences, there are two dominant
models of fairness concerns in the literature. In models of intention-based social pref-
erences, a social interaction is modeled by using psychological game theory (Geanako-
plos, Pearce, and Stacchetti (1989), Battigalli and Dufwenberg (2009)), and an agent
with particular fairness characteristics is modeled as a preference relation over social
outcomes and (higher-order) beliefs about behavior induced by the supposed strat-
egy profile to capture concerns with agents’ intention of the play. For applications of
intention-based approach, see Rabin (1993), Dufwenberg and Kirchsteiger (2004), Falk
and Fischbacher (2006), Segal and Sobel (2007), Charness and Dufwenberg (2006), and
Battigalli and Dufwenberg (2007).

In models of interdependent social preferences, an agent with particular fairness
characteristics is modeled as a collection of preference relations over social outcomes,
where interdependency arises in the sense that one of the preference relations is adopted
depending on the fairness characteristics of everyone involved (Levine (1998)). This
preference interdependency captures agents’ personalities such as “if you are a good

12Of their 142 subjects, there is only one subject who had serious violations of revealed preference.
13See also Andreoni (1989), Andreoni (1990) for a related warm-glow model in a public-goods econ-

omy. Rotemberg and Saloner (1993) also study a leadership style using a model of preferences that
parameterize a degree of altruism.

14See Kirchsteiger (1994) for a related model.
15The ERC model (Bolton and Ockenfels (2000)) assumes that an agent’s utility depends on his

material payoff and his payoff relative to the other player’s payoff as in an envy model. In contrast to
an envy model, however, the utility has a flexibility in its partial derivative with respect to the relative
payoff and hence can capture both reciprocity and spitefulness behaviors. The Fehr and Schmidt
(1999) and ERC model yield qualitatively similar results for the two-player cases but not in general.
See Fehr and Schmidt (2006) for a related discussion.

16One can consider more complex models than the Fehr and Schmidt (1999) model by combining
it with other models. For example, Charness and Rabin (2002) and Erlei (2008) develop such hybrid
models. We employ the Fehr and Schmidt (1999) model because the model incorporates the minimum
set of elements in social preferences that we need to explain the leadership mechanism.
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person, then I will treat you kindly.” See Rotemberg (2008, 2011) and Gul and Pe-
sendorfer (2010) for applications of interdependent social preference models.17

Adopting these alternative models of other-regarding concerns may offer different
kinds of leadership mechanisms from the one investigated in this paper.18 Although
this may provide interesting research topics, we employ the Fehr and Schmidt (1999)
model for two reasons. First, although this model is simple, it successfully explains
the dynamic behaviors in prisoner’s dilemmas. In this respect, the Fehr and Schmidt
(1999) model is certainly a promising candidate model when one considers the issue
of time and social dilemmas by taking fairness concerns into account. Second, the
Fehr and Schmidt (1999) model is tractable. In particular, this model has a simple
and tractable utility functional form.19 This fact enables us to develop our analyses in
several directions, such as equilibrium existence, comparative statics, and equilibrium
characterization in terms of fairness characteristics. Thus, the tractability of the Fehr
and Schmidt (1999) model leads us to a testable theory on time and social dilemmas.

There are also other kinds of other-regarding models in team theory frameworks,
which may be labeled as action-based other-regarding models, because those models
directly assume that an agent feels psychological disutility from the relevant agents’
actions. Among action-based other-regarding models, the one most related to ours
is a model of social pressure. In addition to the cost of effort, a member of a team
feels a disutility when he takes an action in a particular direction.20 Using a pressure
function, Huck and Rey-Biel (2006) model a conformity pressure on effort choices.
That is, a member feels disutility from the difference between his effort level and his
opponent’s effort level. They study the relations between leadership and degrees of
conformity inclination in a two-member team and show that endogenous leadership oc-
curs in a team with at least one conformist under a complete information setup. Then,
they briefly discuss a private information model with two possible degrees of confor-
mity inclination (conformist and nonconformist) and claim that there are sequential
equilibria with endogenous leadership. In contrast to Huck and Rey-Biel (2006), we
employ an outcome-based social preference model, study endogenous leadership under
a general incomplete information setup, and develop our analyses in several directions
in addition to equilibrium existence.

Finally, other than the current paper, there are some attempts to explain leadership

17Gul and Pesendorfer (2010) also provide a foundation for this model in terms of economic primi-
tives.

18For example, one may consider formalizing betrayal aversion, which is experimentally found by
Bohnet and Zeckhauser (2004) and Bohnet, Greig, Herrmann, and Zeckhauser (2008). As we show in
Section 2, how an agent thinks about his own betrayal (his D to opponent’s C) and the risk of being
betrayed (opponent’s D to his C) is important for the endogenous leadership. The Fehr and Schmidt
(1999) model creates a variety of thoughts about it, and this generates the endogenous leadership
with a positive probability in equilibrium. However, as Bohnet and Zeckhauser (2004) and Bohnet,
Greig, Herrmann, and Zeckhauser (2008) state, betrayal aversion may include elements beyond mere
outcome-based other-regarding preferences. Formalizing this concept by using the alternative models
in the text may be useful for studying other leadership mechanisms.

19As a result, this model has generated many economic applications as already listed in footnote 1
and has been well studied in terms of its behavioral basis as in Neilson (2006), Sandbu (2008), and
Rohde (2010). See also Saito (2012) for a recent axiomatic development of the Fehr and Schmidt
(1999) model, which proposes an extension of the Fehr and Schmidt (1999) model that accommodates
the ex ante fairness problem presented by Fudenberg and Levine (2012).

20A seminal work on social pressure is Kandel and Lazear (1992). They modeled peer pressure.
In addition to the cost of effort, a member of a team feels disutility from peer pressure, which may
be social in the sense that it depends on other members’ effort, such as the member feels substantial
disutility when only he shirks. They introduced a general peer-pressure function and studied several
kinds of peer pressure.
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in social dilemma situations using a model of inequity aversion.21 Duffy and Muñoz-
Garćıa (2011) also employ the model of Fehr and Schmidt (1999) preferences with
inequity aversion as in our theory and develop a Bayesian model of the prisoner’s
dilemma. However, they study prisoner’s dilemmas with exogenous sequential moves
for their study of leadership.22 In a later section in this paper, we analyze the same
model as theirs for the purpose of comparison with our endogenous timing game.

2 An illustrative example

To develop basic intuition about the relation between a diversity of inequity aversions
and endogenous leadership, we illustrate by a degenerate numerical example the idea
of a mechanism by which in equilibrium one player with a particular inequity aversion
moves first with C and the other player with a different inequity aversion chooses to
wait and responds with C to the first mover’s choice of C.

i / j C D

C 2, 2 0, 3
D 3, 0 1, 1

Table 1: Example of a prisoner’s dilemma

Consider the prisoner’s dilemma in Table 1. Suppose that there are three possi-
ble types of inequity aversions: Materialist, Envy, and Envy-and-Guilt.23 Each type
evaluates each material payoff profile in Table 1 as in Table 2.

i / j C D i / j C D i / j C D
C 2 0 C 2 −3 C 2 −3
D 3 1 D 3 1 D 0 1

Materialist Envy Envy-and-Guilt

Table 2: Utilities in the prisoner’s dilemma in Table 1

The Materialist type corresponds to a self-interested agent. His utility from an outcome
of a pair of choices is the material payoff that he receives in the outcome. The other
types differ from Materialist when there is an inequality in material payoffs. When
there is a disadvantageous inequality, the Envy and Envy-and-Guilt types feel envy,
which causes a disutility of the payoff difference in addition to a utility of own material
payoffs. This happens in their (C,D) cells, in which their utilities are 0 + (−3) = −3.
When there is an advantageous inequality, the Envy-and-Guilt type feels guilt, which
causes a disutility of the payoff difference. This happens in his (D,C) cell, in which
his utility is 3 + (−3) = 0. We assume that a player is a Materialist type, an Envy
type, and an Envy-and-Guilt type with probabilities 0.2, 0.2, and 0.6, respectively.

Now consider a situation in which two players meet at random and play a game as in
Table 1 without knowledge of the opponent’s type, where players can decide the timing

21Nosenzo and Sefton (2011) consider a version of the Varian (1994) game. They embed the Varian
(1994) game into the same two-period structure as in our game. However, they assume that agents
have common inequity aversion parameters and that the parameter values are common knowledge.
Santos-Pinto (2008) also considers an endogenous timing duopoly market with inequity-averse firms
under the same assumptions.

22Their main concern is to study signaling motives about fairness in a twice-repeated simultaneous-
move or sequential-move prisoner’s dilemma game.

23They correspond to (α, β) = (0, 0), (1, 0), and (1, 1) in the Fehr and Schmidt (1999) model.
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of their choice voluntarily from the possible two timings. In this situation, we can show
that endogenous leadership happens with a positive probability in equilibrium. The key
is how each type thinks about his own betrayal (hisD to his opponent’s C) and a risk of
being betrayed (his opponent’s D to his C). The diversity of inequity aversions creates
diverse ways of thinking about it; that is, it creates different degrees of incentives to
induce conditional cooperation under a risk of being betrayed and/or different degrees
of incentives to cooperate after observing the opponent’s cooperation. Then, such
diverse sensitivities of cooperation naturally generate diverse ways of dynamic decision
making, from which endogenous leadership results.

In what follows, we demonstrate that the following Bayesian strategy constitutes
a sequential equilibrium. The Materialist type behaves as a leader, which means that
he chooses C at timing 1. The Envy type behaves as a defector, which means that
he chooses D at timing 2 irrespective of his observation. The Envy-and-Guilt type
behaves as a conditional cooperator, which means that he moves at timing 2 and
chooses C (resp., D) if his opponent chooses C at timing 1 (resp., otherwise).

Let us verify that no type has an incentive to mimic the other types’ behaviors.24

First, we check if the Materialist type behaves as a leader. He is a benchmark case of
this example in that he is free from envy and guilt; that is, he feels neither disutility
of disadvantageous inequality from being betrayed nor disutility of advantageous in-
equality from his own betrayal. Given the induced population of the three behavior
modes (leader: 0.2, defector: 0.2, conditional cooperator: 0.6), the Materialist type
enjoys expected utility 1.6 (= 0.2× 2 + 0.2× 0 + 0.6× 2) if he behaves as a leader, 1.4
(= 0.2×3+0.2×1+0.6×1) if he behaves as a defector, and 1.2 (= 0.2×2+0.2×1+0.6×1)
if he behaves as a conditional cooperator. Hence, the Materialist type optimally be-
haves as a leader. This happens because the chance of playing with the Envy-and-Guilt
type, who behaves as a conditional cooperator, is large enough so that the benefit of
inducing the Envy-and-Guilt type to take C exceeds the cost of giving up D against
the Materialist and Envy types.

Second, we check if the Envy type behaves as a defector. Since leading behavior
may create a disadvantageous inequality under the presence of defectors, envy discour-
ages players from the leadership behavior under the betrayal risk. To be precise, the
expected utility earned by the Envy type behaving as a leader reduces from 1.6 to 1.0
(= 0.2× 2+0.2× (−3)+0.6× 2). This makes the defector mode optimal for the Envy
type.

Third, we check if the Envy-and-Guilt type behaves as a conditional cooperator.
In addition to the abovementioned effect of envy, guilt plays a role. Since defect-
ing behavior may create an advantageous inequality in the presence of leaders, guilt
discourages players from the betraying behavior. To be precise, the expected utility
earned by the Envy-and-Guilt type behaving as a defector reduces from 1.4 to 0.8
(= 0.2 × 0 + 0.2 × 1 + 0.6 × 1). This makes the conditional cooperator mode optimal
for the Envy-and-Guilt type.

Thus, we establish that the abovementioned Bayesian strategy indeed constitutes a
sequential equilibrium under the specific type distribution. Now suppose that a player
of the Materialist type and a player of the Envy-and-Guilt type are paired and play the
prisoner’s dilemma. Then, the Materialist type chooses C at timing 1 and the Envy-
and-Guilt type, who moves at timing 2, reacts with C. Thus, a successful leadership
is endogenously realized with a positive probability in equilibrium.

Note that it is critical for the endogenous leadership that all of the three behavior
modes prevail with positive probabilities. First, the leading behavior taken by the

24The reader may verify that he has no incentive for any other deviation.
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Materialist type is obviously indispensable. Furthermore, the conditional cooperation
by the Envy-and-Guilt type is not triggered without the leading behavior. Next, a
conditional cooperator is also indispensable. To see this, suppose that no conditional
cooperator exists. Then, the Materialist type would not behave as a leader because
then behaving as a leader has no effect of inducing a second mover to take C and simply
means giving up the dominant choice of D.25 Finally, defectors must also exist. If there
is no defector, there is no risk of being betrayed. Therefore, the Envy-and-Guilt type
would not wait and see, but rather would behave as a leader. Then, there would be no
type who behaves as a conditional cooperator. In this way, the endogenous leadership
cannot afford to lose any of the three behavior modes.

In the above degenerate example, we assume a particular combination of three
types of inequity aversions with a particular distribution and consider a particular
leadership pattern by these types. In the general model that we consider in this paper,
the degree of incentive for a type to induce conditional cooperation is determined in
equilibrium jointly with a distribution of the three behavior modes. As we will show,
there exist three leadership patterns, depending on the parameters.

3 The model

We consider a version of the prisoner’s dilemma game in which players choose the
timing of moves under incomplete information about the preferences of players. This
game is called PD hereafter and defined as follows.

A prisoner’s dilemma is a symmetric game given by Table 3. The parameters
a, b, c, d are the material payoffs. They are assumed to be b > a > d > c. This payoff
structure exhibits social dilemma, because D is the payoff-maximizing choice for any
given belief about the opponent’s choice although (D,D) is Pareto inferior to (C,C).26

i / j C D

C a, a c, b

D b, c d, d

Table 3: Prisoner’s dilemma

We hypothesize that each player i has Fehr–Schmidt inequity-averse preferences
over the outcomes described by the pairs of material payoffs in Table 3. The preferences
are represented by a utility function

u(αi,βi)(xi, xj) = xi − αi max{xj − xi, 0} − βi max{xi − xj , 0} (1)

where xi and xj are material payoffs to players i and j, respectively. The first term
represents the direct utility from the material payoff xi. The second term captures the
utility loss from disadvantageous inequality when xi is less than xj . The parameter
αi ≥ 0 may be interpreted as the envy of player i. The third term captures the utility
loss from advantageous inequality when xi is larger than xj . The parameter βi ≥ 0
may be interpreted as the sense of guilt of player i.

25In the general model which we consider in this paper, the effect of no conditional cooperator is
that then behaving as a conditional cooperator dominates behaving as a leader.

26We do not include the restriction 2a > b + c commonly imposed in repeated prisoner’s dilemma
studies, which guarantees that (C,C) is value-maximizing efficient, because it is irrelevant to our
analysis.
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From the pairs of material payoffs (xi, xj) in Table 3, we have a utility representa-
tion of the prisoner’s dilemma played by players with Fehr–Schmidt preferences. This
is shown in Table 4.

i / j C D

C a, a c− αi(b− c), b− βj(b− c)
D b− βi(b− c), c− αj(b− c) d, d

Table 4: Utility representation of the prisoner’s dilemma

We assume that Table 3 is common knowledge among the players, but Table 4 is
not. Player i knows the inequality aversion parameters αi and βi in his utility function,
but he does not know his opponent’s parameters αj and βj .

We introduce a common prior assumption about the belief that a player initially
holds about his opponent’s utility function. We call the pair (α, β) in the utility
function (1) the type of the player. The type is a realization of the continuous random
variable (α,β) in the space of possible types given by

T = {(α, β)|0 ≤ α ≤ ᾱ, 0 ≤ β ≤ 1, β ≤ α}. (2)

The parameter ᾱ is the upper bound of the envy parameter and it can be either finite
or infinite. The upper bound of the guilty parameter is assumed to be 1 because a
guilty parameter larger than 1 would mean that more material payoffs are undesirable
when a player is receiving more than his opponent. The envy parameter α is assumed
to be no less than the guilty parameter β because inequality in material payoffs matters
more when a player receives less than his opponent.27 We assume that a type (α, β) is
realized according to a density f(α, β) with the full support over T . We also assume
that realizations are independent across players. All of these assumptions about initial
beliefs are assumed to be common knowledge.

Under incomplete information about their utility functions, the players play the
prisoner’s dilemma in Table 3 in the following sequence. There are two timings: 1 and
2. At timing 1, the players choose either C, D, or ∅ independently and simultaneously,
where ∅ denotes postponing their choices until timing 2 rather than choosing C or
D. At timing 2, a player has a move when and only when he chooses ∅ at timing 1.
Before he moves, he is informed of his opponent’s choice at timing 1 and then he must
choose either C or D. When both players choose ∅ at timing 1, their choices at timing
2 are made independently and simultaneously. This is the end of a play. Each player
has made a choice over C or D either at timing 1 or 2 once and only once. A player
receives the material payoff in Table 3 corresponding to the pair of their choices.

A PD thus defined is determined by two sets of parameters. One is the ma-
terial payoffs (a, b, c, d) in the underlying prisoner’s dilemma. The other is a char-
acteristic (f, T ) of players’ preferences. We fix T throughout the paper and write
PD((a, b, c, d), f) when the parameters of the PD need to be explicit.

27We follow the standard formalization of the parameter space that Fehr and Schmidt (1999) pro-
posed. Several subsequent studies consider the possibility of expanding this parameter space (for
example, status seeking modeled by β < 0). However, we focus on the issue of inequity aversion
captured by this type space.
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4 The three mode equilibrium

4.1 The strategy

A player has four information sets in PD. One is the information set for choice at
timing 1. The other three are the information sets for choice at timing 2 corresponding
to his opponent’s choice at timing 1 being either C, D, or ∅. A (pure) strategy is a
complete plan that assigns to each of these information sets an action available at the
information set. Formally, it is a quadruplet s = (a1, aC , aD, a∅) where a1 ∈ {C,D, ∅}
is the prescribed choice at timing 1, and aC , aD, a∅ ∈ {C,D} are the prescribed choices
at timing 2 when his opponent’s choices at timing 1 are C, D, and ∅, respectively. The
(pure) strategy space is S = {C,D, ∅} × {C,D} × {C,D} × {C,D}.

A Bayesian strategy is a mapping s : T → S. It assigns to each type (α, β) ∈ T a
strategy

s(α, β) = (a1(α, β),aC(α, β),aD(α, β),a∅(α, β)) ∈ S

which this type follows in a play of the PD where ah(α, β) is the prescribed choice ah

for each information set h for type (α, β).

4.2 The three-mode strategy

We examine a Bayesian strategy named three-mode strategy that assigns a strategy
from a particular set of three behavior modes. They are called C-mode, CDD-mode,
and DDD-mode and are defined as the following strategies in S where C-mode is
described as a reduced strategy with aC , aD, and a∅ for unreached information sets
left unspecified.

C = (C, aC , aD, a∅)
CDD = (∅, C,D,D)
DDD = (∅, D,D,D)

These strategies in S are called behavior modes in a three-mode strategy when we
stress the feature that each of them are followed by a mass of types in T according to
the Bayesian strategy.

Formally, for a Bayesian strategy s : T → S, let

TC(s) = {(α, β) ∈ T |s(α, β) = C}
TCDD(s) = {(α, β) ∈ T |s(α, β) = CDD}
TDDD(s) = {(α, β) ∈ T |s(α, β) = DDD}

denote the sets of types who follow C, CDD, and DDD, respectively. Let φ denote
the probability measure over T induced by the prior density f . For a Borel subset B
of T , it assigns the probability of a player being of a type in B by

φ(B) =
∫

B
f(α, β)d(α, β). (3)

Then, the three-mode strategy is defined as follows.

Definition 1. A Bayesian strategy s : T → S is a three-mode strategy if (TC(s), TCDD(s), TDDD(s))
is a partition of T and φ(TC(s)) > 0, φ(TCDD(s)) > 0, φ(TDDD(s)) > 0.
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When players play a three-mode strategy s, four kinds of play paths will be realized
with positive probabilities. These are shown in Table 5. For example, (C,CDD) cell
shows a play path in which player i chooses C at timing 1 according to si = C and
player j waits at timing 1 and chooses C at timing 2 according to sj = CDD. This is
the leadership process.

si / sj C CDD DDD

C C ,C C , ∅ → C C , ∅ → D

CDD ∅ → C,C ∅ → D, ∅ → D ∅ → D, ∅ → D

DDD ∅ → D,C ∅ → D, ∅ → D ∅ → D, ∅ → D

Table 5: Play paths of three-mode strategies

4.3 The three-mode equilibrium

We consider a symmetric sequential equilibrium in three-mode strategies. We call this
equilibrium a three-mode equilibrium.

We prepare a characterization of the three-mode equilibrium by an associated dis-
tribution of the three behavior modes. Let µ = (µC , µCDD, µDDD) denote a probability
distribution according to which a player follows strategies C, CDD, and DDD. Let

∆ ≡ {µ = (µC , µCDD, µDDD)|0 ≤ µC , µCDD, µDDD ≤ 1 and µC + µCDD + µDDD = 1}

be the set of distributions over the three strategies. Then,

Definition 2. A distribution µ ∈ ∆ is called a three-mode distribution if µC > 0,
µCDD > 0, and µDDD > 0.

A three-mode strategy s is associated with a three-mode distribution µ by the relation
µC = φ(TC(s)), µCDD = φ(TCDD(s)), and µDDD = φ(TDDD(s)). A three-mode
distribution is called a three-mode equilibrium distribution if a three-mode strategy
that generates the distribution is a three-mode equilibrium strategy.

Imagine that a player holds a belief µ ∈ ∆ according to which his opponent follows
strategies C, CDD, and DDD. Then, the expected utility for a type (α, β) to follow
C given µ is given by

U(α,β)(C, µ) = µCa+ µCDDa+ µDDD(c− α(b− c))

because, as is shown in Table 5, the outcome will be (C,C), (C,C), and (C,D) when
the opponent follows C, CDD, andDDD, respectively. Similarly, the expected utilities
from CDD and DDD are:

U(α,β)(CDD,µ) = µCa+ µCDDd+ µDDDd

U(α,β)(DDD,µ) = µC(b− β(b− c)) + µCDDd+ µDDDd.

We define the following sets of types that are supposed to describe those sets of
types for whom C, CDD, and DDD are sequentially rational responses to µ.

T ∗
C(µ) = {(α, β) ∈ T |U(α,β)(C, µ) ≥ U(α,β)(CDD,µ), U(α,β)(DDD,µ)}

T ∗
CDD(µ) = {(α, β) ∈ T |U(α,β)(CDD,µ) ≥ U(α,β)(C, µ), U(α,β)(DDD,µ) and β ≥ β∗}
T ∗

DDD(µ) = {(α, β) ∈ T |U(α,β)(DDD,µ) ≥ U(α,β)(C, µ), U(α,β)(CDD,µ) and β ≤ β∗},
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where we define β∗ ≡ b−a
b−c . The sets T ∗

C(µ), T ∗
CDD(µ) and T ∗

DDD(µ) are called the
best-response type sets. The set T ∗

C(µ) is a set of types for whom C is the best among
the three strategies when he evaluates them at the information set at timing 1 given
the belief µ. The set T ∗

CDD(µ) is a set of types for whom CDD is the best among the
three strategies at two information sets. It is the best at the information set at timing
1 given the belief µ, which is parallel to T ∗

C(µ). It is also the best at the information
set at timing 2 where he observes that his opponent chooses C at timing 1. He chooses
between C and D at this information set. He prefers C to D if a > b − β(b − c),
he prefers the opposite if a < b − β(b − c), and he is indifferent if a = b − β(b − c).
Therefore, the sequential rationality for CDD requires β ≥ β∗. The set T ∗

DDD(µ) is
parallel to T ∗

CDD(µ).
Now, we show that the three-mode equilibrium is characterized by a three-mode

distribution, as follows.

Lemma 1. Consider a function ψ that assigns to each µ ∈ ∆ a vector ψ(µ) =
(ψC(µ), ψCDD(µ), ψDDD(µ)) by ψC(µ) = φ(T ∗

C(µ)), ψCDD(µ) = φ(T ∗
CDD(µ)), and

ψDDD(µ) = φ(T ∗
DDD(µ)). Then, ψ(µ) ∈ ∆ for every µ ∈ ∆ \ (1, 0, 0) and ψ is contin-

uous on ∆ \ (1, 0, 0). Furthermore,

(1) If s : T → S is a three-mode equilibrium strategy, then µ = (φ(TC(s)), φ(TCDD(s)), φ(TDDD(s)))
is a three-mode distribution such that µ = ψ(µ).

(2) If µ ∈ ∆ is a three-mode distribution such that µ = ψ(µ), then any three-
mode strategy s : T → S that satisfies TC(s) ⊆ T ∗

C(µ), TCDD(s) ⊆ T ∗
CDD(µ),

and TDDD(s) ⊆ T ∗
DDD(µ) is a three-mode equilibrium strategy. Furthermore,

φ(TC(s)) = φ(T ∗
C(µ)) = µC , φ(TCDD(s)) = φ(T ∗

CDD(µ)) = µCDD, and φ(TDDD(s)) =
φ(T ∗

DDD(µ)) = µDDD.

Lemma 1 means that the function ψ generates a distribution over strategies C, CDD,
and DDD by generating probability measures of best-response type sets against a
belief µ ∈ ∆ \ (1, 0, 0) and that a three-mode equilibrium strategy is identified as a
three-mode strategy that generates a three-mode distribution as a fixed point of the
function ψ.

4.4 The best-response type sets

To characterize a fixed point of ψ, let us study the best-response type sets T ∗
C(µ),

T ∗
CDD(µ), and T ∗

DDD(µ). We explore them by examining preferences over C, CDD,
and DDD because the best-response type sets are defined by the preferences. Take
the case of µ with 0 < µC < 1. First, consider a preference over C and CDD. A player
of (α, β) type prefers C to CDD if and only if µCa+ µCDDa+ µDDD(c− α(b− c)) >
µCa+ µCDDd+ µDDDd. Let

α∗(µ) ≡ a− d

b− c

µCDD

µDDD
− d− c

b− c
(4)

where we set α∗(µ) = ∞ when µDDD = 0. Then, (α, β) type prefers C to CDD if and
only if α < α∗(µ). He prefers the opposite when α > α∗(µ), and he is indifferent when
α = α∗(µ). The threshold α∗(µ) lies in the interval (0, ᾱ) and partitions the type space
T if and only if

d− c

a− d
<
µCDD

µDDD
<
d− c

a− d
+
b− c

a− d
ᾱ. (5)
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Second, consider a preference over CDD and DDD. A player of (α, β) type prefers
CDD toDDD if and only if µCa+µCDDd+µDDDd > µC(b−β(b−c))+µCDDd+µDDDd;
that is, β > β∗ where the threshold β∗ is defined previously when we introduced the
best-response type sets. He prefers the opposite when β < β∗, and he is indifferent
when β = β∗. Note that the threshold β∗ is 0 < β∗ = b−a

b−c < 1 so that it partitions the
type space.

Finally, consider a preference over C and DDD. A player of (α, β) type prefers
C to DDD if and only if µCa + µCDDa + µDDD(c − α(b − c)) > µC(b − β(b − c)) +
µCDDd+ µDDDd. Let

H(α|µ) ≡ µDDD

µC
α+

[b− a

b− c
+
µDDD(d− c) − µCDD(a− d)

µC(b− c)

]
=
µDDD

µC
(α− α∗(µ)) + β∗. (6)

Then, (α, β) type prefers C to DDD if and only if β > H(α|µ). He prefers the opposite
when β < H(α|µ), and he is indifferent when β = H(α|µ).

Note that, as a consequence of transitivity of preferences, the two thresholds α∗(µ),
β∗ introduced so far satisfy

U(α∗(µ),β∗)(C, µ) = U(α∗(µ),β∗)(CDD,µ) = U(α∗(µ),β∗)(DDD,µ).

This means that β∗ = H(α∗(µ)|µ). Therefore, the best-response type sets to µ with
0 < µC < 1 are characterized immediately, as follows.

Lemma 2. For µ with 0 < µC < 1, the best response type sets are

T ∗
C(µ) = T ∩ {(α, β)|α ≤ α∗(µ), β ≥ H(α|µ)} (7)

T ∗
CDD(µ) = T ∩ {(α, β)|α ≥ α∗(µ), β ≥ β∗} (8)
T ∗

DDD(µ) = T ∩ {(α, β)|β ≤ H(α|µ), β ≤ β∗}. (9)

An example of the best-response type sets are illustrated in Figure 1. This example is
obtained when µ satisfies β∗ < α∗(µ) < ᾱ and H(0|µ) > 0. All of the best-response
type sets are nondegenerate in this example.

�

�

1

1

0 ��(µ)

��

⇥ = H(�|µ)

T �
C(µ)

T �
CDD(µ)

T �
DDD(µ)

Figure 1: Inequity concerned leader
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Consider the case of µ with µC = 0. Then, U(α,β)(CDD,µ) = U(α,β)(DDD,µ) = d
for any (α, β) ∈ T . Therefore, it is straightforward to see that the best-response type
sets are as follows.

Lemma 3. For µ with µC = 0, the best-response type sets are

T ∗
C(µ) = T ∩ {(α, β)|α ≤ α∗(µ)} (10)

T ∗
CDD(µ) = T ∩ {(α, β)|α ≥ α∗(µ), β ≥ β∗} (11)
T ∗

DDD(µ) = T ∩ {(α, β)|α ≥ α∗(µ), β ≤ β∗}. (12)

5 Existence of the three-mode equilibrium

5.1 µC-fixed point and fixed point of ψ

Our first result is a characterization of the existence of a three-mode equilibrium.
In light of Lemma 1, we study a fixed point of ψ. Since a three-mode equilibrium
distribution must be fully mixed, we must exclude a fixed point on the boundaries of
∆.

We study a fixed point of ψ in two steps.28 First, we identify the set of µC-fixed
points of ψ. A µC-fixed point µ̂ is a belief in ∆ with a property that the probability
of strategy C remains unchanged by ψ; that is, ψC(µ̂) = µ̂C . The second step is to
identify from the set of µC-fixed points a belief µ̂ with an additional property that the
probability of strategy DDD also remains unchanged by ψ; that is, ψDDD(µ̂) = µ̂DDD.

Now, we begin the first step to find µC-fixed points of ψ. In particular, we are
interested in those µC-fixed points that are three-mode distributions. For µ̂ to satisfy
ψC(µ̂) = µ̂C and µ̂C > 0, the best-response type set T ∗

C(µ̂) must have a positive
probability measure. By Lemma 2, this implies that α∗(µ̂) > 0 for the threshold (4).
By the condition (5), this means that µ̂CDD > d−c

a−d µ̂DDD. Therefore, we study those
µ̂ with ψC(µ̂) = µ̂C in a subset

∆′ ≡ {µ̃ ∈ ∆ \ (1, 0, 0)|µ̃CDD ≥ d− c

a− d
µ̃DDD}

of ∆ \ (1, 0, 0). The following establishes that those points are an arc in ∆′.

Lemma 4. There exists a unique µ̄C in (0, 1) such that for each µC ∈ [0, µ̄C ], there
exists a unique µ̂ ∈ ∆′ that satisfies ψC(µ̂) = µ̂C = µC . We denote by µ̂ = µ̂(µC) a
function that assigns to each µC ∈ [0, µ̄C ] the corresponding µC-fixed point µ̂. Then,

(1) for µC = 0, µ̂(0) = (0, d−c
a−c ,

a−d
a−c ) and ψ(µ̂(0)) = (0, φ(β > β∗), φ(β < β∗)),

(2) for µC = µ̄C , µ̂(µ̄C) = (µ̄C , 1 − µ̄C , 0) and ψ(µ̂(µ̄C)) = (µ̄C , 0, 1 − µ̄C),

(3) for µC ∈ (0, µ̄C), µ̂(µC) is in the interior of ∆′.

Furthermore, the function µ̂(µC) is continuous.

Lemma 4 is illustrated in Figure 2. The distribution µ̂ = (0, d−c
a−c ,

a−d
a−c ) is defined

by a boundary µ̂C = 0 of ∆ and a boundary µ̂CDD = d−c
a−d µ̂DDD of ∆′. It is a µC-

fixed point for µC = 0 because the latter condition (that is α∗(µ̂) = 0) means that µ̂
28Alternatively, we can study a fixed point of ψ by a standard method that relies on the Kakutani

fixed-point theorem by extending a function ψ to a correspondence defined over ∆. We use the two-
step analysis developed below because this analysis is also useful for the comparative static analysis
of the three-mode equilibrium, which we develop later.
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is mapped by ψ to ψ(µ̂) such that ψC(µ̂) = 0. There exists another µC-fixed point
µ̂ = (µ̄C , 1 − µ̄C , 0) for some µ̄C ∈ (0, 1) on the boundary µDDD = 0 of ∆. To see
it, note that any distribution µ on this boundary is mapped by ψ to ψ(µ) such that
ψCDD(µ) = 0. The reason is that, as we noted in the illustrative example of Section
2, when the opponent is expected to never follow DDD (that is, µDDD = 0), there is
no risk of being betrayed by an opponent. This makes C dominate CDD. Therefore,
a best response must be either C or DDD. The distribution µ̂ = (µ̄C , 1 − µ̄C , 0) is a
distribution for which the best response generates the same probability ψC(µ̂) = µ̄C

of C and a probability ψDDD(µ̂) = 1 − µ̄C of DDD, which is equal in size to the
probability µ̂CDD of CDD in µ̂. Lemma 4 means that the set of µC-fixed point is an
arc that connects these two extreme points because a µC-fixed point exists continuously
depending on µC from µC = 0 to µC = µ̄C .

Figure 2: µC-fixed points and their ψ images under f(α, β) = 60(1 − α)β2

The second step to find a fixed point of ψ is to find a belief µ̂ along the arc
µ̂ = µ̂(µC) of µC-fixed points for which the probability of strategy DDD also remains
unchanged by ψ; that is, ψDDD(µ̂) = µ̂DDD. Figure 2 also illustrates this exercise.
We map each µC-fixed point µ̂ on the arc µ̂ = µ̂(µC) to a belief in ∆ by ψ. The
image of the arc by ψ is also an arc in ∆ because ψ is continuous. As is reported in
Lemma 4, it starts at ψ(µ̂(0)) = (0, φ(β > β∗), φ(β < β∗)) for µC = 0 and ends at
ψ(µ̂(µ̄)) = (µ̄C , 0, 1 − µ̄C) for µC = µ̄C . A crossing point of this image arc with the
arc µ̂ = µ̂(µC) is a fixed point of ψ.

For the purpose of this analysis, we define a function λ that assigns to each µC ∈
[0, µ̄C ]

λ(µC) = ψDDD(µ̂(µC)) − µ̂DDD(µC) (13)

where we write the components of a µC-fixed point µ̂(µC) as µ̂(µC) = (µ̂C(µC), µ̂CDD(µC), µ̂DDD(µC)).
Figure 3 shows a graph of this function (13) that corresponds to Figure 2. When a
µC-fixed point µ̂ is mapped by ψ to an image ψ(µ̂) located north-west of µ̂ on a line
with the same µC in Figure 2, the corresponding value of λ is negative in Figure 3.
When it is mapped in the opposite direction in Figure 2, λ is positive in Figure 3. The
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crossing points of the arc and its image in Figure 2 correspond to the solutions to the
equation λ(µC) = 0 in Figure 3.

Figure 3: λ under f(α, β) = 60(1 − α)β2

Now, a three-mode equilibrium distribution is characterized as follows.

Lemma 5. A belief µ ∈ ∆ is a three-mode equilibrium distribution if and only if

(1) µ = µ̂(µC)

(2) λ(µC) = 0

(3) µC > 0.

Condition (1) is a requirement that µC = ψC(µ). Condition (2) is a requirement
that µDDD = ψDDD(µ). These conditions guarantee that µ is a fixed point of ψ
in ∆ \ (1, 0, 0). Condition (3) excludes a fixed point at an extreme point µ̂(0) =
(0, d−c

a−c ,
a−d
a−c ) of the arc µ̂ = µ̂(µC).

In Lemma 5, we do not need a condition to exclude a fixed point at another extreme
point µ̂(µ̄C) = (µ̄C , 1− µ̄C , 0) of the arc µ̂ = µ̂(µC). From Lemma 4, we already know
that µ̂(µ̄C) = (µ̄C , 1 − µ̄C , 0) is mapped to ψ(µ̂(µ̄C)) = (µ̄C , 0, 1 − µ̄C). Therefore,
µ̂DDD(µ̄C) = 0 < 1 − µ̄C = ψDDD(µ̂(µ̄C)). Hence, µ̂(µ̄C) is never a fixed point of ψ.

5.2 A sufficient condition for the existence of the three-mode equi-
librium

Now, we develop a sufficient condition for the existence of a three-mode equilibrium.
The sufficient condition also conveys a simple and straightforward logic by which lead-
ership should be expected to emerge if a prisoner’s dilemma satisfies the condition.

Lemma 5 shows that a three-mode equilibrium exists if there exists a solution
µC > 0 to the equation λ(µC) = 0. As we noted after the lemma, it is always the case
that λ(µ̄) > 0. Therefore, if λ(0) < 0, the continuity of λ(µC) guarantees a solution
µC > 0 to the equation λ(µC) = 0. This leads us to the following sufficient condition
for the existence of the three-mode equilibrium.
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Theorem 1. There exists a three-mode equilibrium in PD((a, b, c, d), f) if

φ(β > β∗) >
d− c

a− c .
(14)

Recall that β∗ is a threshold such that a player of type (α, β) with β > β∗ prefers
CDD to DDD; that is, he is a potential conditional cooperator. Theorem 1 says
that a three-mode equilibrium exists if the probability φ(β > β∗) of those potential
conditional cooperators is large enough. The condition (14) provides a specific value
d−c
a−c for this probability.

The condition (14) has the following simple meaning. Suppose that no type takes
the leadership behavior. In particular, consider a Bayesian strategy s : T → S in which
all the types (α, β) with β > β∗ follow CDD and all the types (α, β) with β ≤ β∗ follow
DDD. Then, the belief µ consistent with this Bayesian strategy is µC = φ(TC(s)) = 0,
µCDD = φ(TCDD(s)) = φ(β > β∗), and µDDD = φ(TDDD(s)) = φ(β ≤ β∗). When the
condition (14) is satisfied, a player of type (0, 0) prefers C to CDD and DDD given
this belief µ because

U(0,0)(C, µ) − U(0,0)(CDD,µ) = [φ(β > β∗)a+ φ(β ≤ β∗)c] − [φ(β > β∗)d+ φ(β ≤ β∗)d]

= (a− c)
[
φ(β > β∗) − d− c

a− c

]
> 0

U(0,0)(C, µ) − U(0,0)(DDD,µ) = (a− c)
[
φ(β > β∗) − d− c

a− c

]
> 0.

Thus, the condition (14) means the situation in which the pure materialist (α = β = 0)
has an incentive to take the leadership behavior if no one takes the leadership, all the
types with β > β∗ follow CDD, and all the others follow DDD.

When the condition (14) holds, λ(0) = ψDDD(µ̂(0)) − µ̂DDD(0) < 0 is guaranteed
for the following reason. Lemma 4 states that the µC-fixed point µ̂(0) for µC = 0 is
mapped by ψ to ψ(µ̂(0)) = (0, φ(β > β∗), φ(β < β∗)). Then, the above meaning of the
condition (14) states that, in response to this belief ψ(µ̂(0)), strategy C is followed by
a set of types with a positive probability measure, that is, ψC(ψ(µ̂(0))) > 0. Therefore,
when we compare µ̂(0) and ψ(µ̂(0)), the property of the belief µ̂(0) that ψC(µ̂(0)) = 0
(that is, no one takes the leadership) requires that the belief µ̂(0) places more weight
on DDD than the belief ψ(µ̂(0)); that is, µ̂DDD(0) > ψDDD(µ̂(0)).

Given its meaning, the reason why the condition (14) guarantees the existence of a
three-mode equilibrium is now transparent, as follows. We consider the arc µ̂ = µ̂(µC)
in ∆, along which it holds that ψC(µ̂) = µ̂C . The extreme points of the arc are
µ̂(0) = (0, d−c

a−c ,
a−d
a−c ) and µ̂(µ̄C) = (µ̄C , 1− µ̄C , 0). The former corresponds to the belief

with the lowest µC on the arc and the latter corresponds to the belief with the highest
µC on the arc. As we explained above, when the condition (14) holds, it holds that
ψDDD(µ̂(0)) < µ̂DDD(0) at the belief µ̂(0) with the lowest µC on the arc; that is, a
best response to the belief lowers the probability of DDD-mode. (Figure 2 exhibits
this case.) On the other hand, ψDDD(µ̂(µ̄C)) > µ̂DDD(µ̄C) at the belief µ̂(µ̄C) with
the highest µC on the arc; that is, a best response to the belief raises the probability
of DDD-mode. Hence, there must exist a belief between the two extreme points along
the arc that maintains the probability of DDD-mode under a best response.

5.3 A characterization of the existence of the three-mode equilibrium

Theorem 1 establishes a sufficient condition (14) for the existence of the three-mode
equilibrium. Then, we proceed to develop a characterization of the existence of the
three-mode equilibrium.
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For this purpose, let us restate Theorem 1 as a sufficient condition for the existence
of the three-mode equilibrium in a space of prisoner’s dilemma parameters (a, d), as
follows.

Corollary 1. For each a ∈ (c, b), define

d̄(a) ≡ φ(β > β∗)a+ (1 − φ(β > β∗))c. (15)

Then,

(1) it is c < d̄(a) < a,
d

da
d̄(a) > 0, lim

a→c
d̄(a) = c, lim

a→b
d̄(a) = b, and

(2) there exists a three-mode equilibrium in PD((a, b, c, d), f) if

c < d < d̄(a) (16)

The upper bound d̄(a) defined by (15) is a value of d for which the condition (14)
in Theorem 1 holds in equality, that is,

φ(β > β∗) =
d̄(a) − c

a− c .
(17)

This gives the area of (a, d) in the space of a normalized prisoner’s dilemma for which
a three-mode equilibrium is guaranteed to exist. It is illustrated by a dashed line in
Figure 4.29
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Figure 4: Sufficient condition for the existence of the three-mode equilibrium

Now, we fix f and determine for each (a, d) with d̄(a) ≤ d < a whether there
exists a three-mode equilibrium in PD((a, b, c, d), f). Note that, in the definition of

29Figure 4 shows the area of the sufficiency condition (16) for the case of b = 3, c = 0, and
f(α, β) = 27{(α− 2

3
)4 + β4}.
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the function λ(µC) in (13), the function µ̂(µC) depends on a, d and the function ψ(µ)
depends on a, d so that the function λ(µC) depends on a, d. To be explicit about this
fact, let us rewrite the definition as follows.

λ(µC , a, d) = ψDDD(µ̂(µC , a, d), a, d) − µ̂DDD(µC , a, d) (18)

Similarly, let us denote µ̄ as µ̄(a, d) to express the fact that the upper bound for µC

that admits µC-fixed points depends on a, d. The function λ(µC , a, d) in (18) and its
domain depend on the prisoner’s dilemma parameters (a, d), as follows.

Lemma 6.

(1) µ̄(a, d) is strictly increasing in a and strictly decreasing in d.

(2) λ(µC , a, d) is strictly decreasing in a and strictly increasing in d.

The intuition for why λ(µC , a, d) is strictly increasing in d is as follows.30 Com-
pare PD((a, b, c, d′), f) and PD((a, b, c, d′′), f) such that d′ > d′′. Then, strategies
CDD and DDD, from which a player may receive a payoff d, are more attrac-
tive in PD((a, b, c, d′), f) than in PD((a, b, c, d′′), f). This makes the probability of
DDD by best response at least as high in PD((a, b, c, d′), f) as in PD((a, b, c, d′′), f);
that is, ψDDD(µ̂(µC , a, d

′), a, d′) ≥ ψDDD(µ̂(µC , a, d
′′), a, d′′). The increase in attrac-

tiveness of CDD and DDD also reduces the incentive for a player to follow strat-
egy C in PD((a, b, c, d′), f). Therefore, for a given µC , a µC-fixed point µ̂ that
achieves the same µC by best response must place less weight on DDD to create
a stronger incentive to follow C in PD((a, b, c, d′), f) than in PD((a, b, c, d′′), f); that
is, µ̂DDD(µC , a, d

′) < µ̂DDD(µC , a, d
′′). Hence, λ(µC , a, d

′) > λ(µC , a, d
′′).

By this monotonicity of a function λ in (a, d), we establish the following character-
ization that the existence of the three-mode equilibrium is monotone in (a, d).

Theorem 2. For each a ∈ (c, b), there exists d̂(a) ∈ [d̄(a), a) such that

(1) there exists a three-mode equilibrium in PD((a, b, c, d), f) if

c < d < d̂(a), (19)

(2) there exists no three-mode equilibrium in PD((a, b, c, d), f) if

d̂(a) < d < a. (20)

Furthermore, the bound d̂(a) is continuous, strictly increasing, lim
a→c

d̂(a) = c, and

lim
a→b

d̂(a) = b.

Theorem 2 is illustrated in Figure 4. A set of prisoner’s dilemma games (a, d) is
partitioned by a function d̂ = d̂(a) (denoted as a bold line) into a north-west part
that supports a three-mode equilibrium and a south-east part that fails to support a
three-mode equilibrium.

Theorem 2 also shows that the upper bound d̂(a) for prisoner’s dilemma games
(a, d) with a three-mode equilibrium for a given a is bounded away from a. In words,
the nature of the prisoner’s dilemma that there is an opportunity of Pareto improve-
ment from (d, d) to (a, a) does not guarantee successful leadership. The leadership will
not emerge if the gain from the Pareto improvement is limited.

30The intuitions for the other claims in Lemma 6 are similar.
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The threshold d̂(a) for the existence of the three-mode equilibrium in Theorem 2
may or may not coincide with the sufficiency bound d̄(a) in Corollary 1. In Appendix
A, we provide a sufficient condition under which they coincide. In general, however,
the threshold d̂(a) in Theorem 2 may be strictly higher than the sufficiency bound d̄(a)
in Corollary 1, for the following reason. The bound d̄(a) corresponds to the prisoner’s
dilemma in which a pure materialist (α = β = 0) is indifferent between taking the
leadership behavior and following DDD if no type takes the leadership at all. Then,
all the types, other than a pure materialist, are not willing to take the leadership
behavior either given the same belief. However, although no type has an incentive to
take the leadership if the other types are not expected to take the leadership, some
types may be willing to take the leadership if some other types are expected to take
the leadership. Then, d̄(a) < d̂(a). Figure 5 is an example of this case d̄(a) < d̂(a).31

d̄

d

µ
C

Figure 5: Equilibrium locus under f(α, β) = 27{(α− 2/3)4 + β4}

6 Comparative statics of the three-mode equilibrium

Our second result is comparative statics of the three-mode equilibrium. Parallel to
our first result on the existence of the three-mode equilibrium, we fix f and conduct a
comparative statics analysis with respect to the prisoner’s dilemma parameters (a, d).

6.1 Comparative statics of the three-mode equilibrium distribution

We conduct a comparative statics analysis of the three-mode equilibrium distribution
µ. As we noted after Theorem 2, there may exist multiple three-mode equilibria in
a prisoner’s dilemma and this is the case shown in Figure 3. Therefore, we pursue
a monotone comparative statics analysis of the three-mode equilibrium distributions
with the maximum of µC and with the minimum of µC . Recall from Lemma 5 that
the value of µC in the three-mode equilibrium is determined by λ(µC , a, d) = 0. We

31In addition to Theorem 2, Figure 5 demonstrates that there may exist a three-mode equilibrium
in PD((a, b, c, d̂(a)), f) at the threshold d̂(a). In light of Lemma 6, it is easily verified that this occurs
if and only if there exists µ > 0 such that λ(µ, a, d̄(a)) = 0 at the sufficiency bound d̄(a) in Corollary
1.
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consider

µmax
C (a, d) ≡ max{µC ∈ (0, 1)|λ(µC , a, d) = 0}
µmin

C (a, d) ≡ min{µC ∈ (0, 1)|λ(µC , a, d) = 0}.

The values µmax
C (a, d) and µmin

C (a, d) are well-defined because λ(µC , a, d) is continuous
in µC so that the set of µC in the three-mode equilibrium is compact. Then, we define
the maximum leadership distribution and the minimum leadership distribution by

µmax(a, d) = (µmax
C (a, d), µmax

CDD(a, d), µmax
DDD(a, d)) ≡ µ̂(µmax

C (a, d))

µmin(a, d) = (µmin
C (a, d), µmin

CDD(a, d), µmin
DDD(a, d)) ≡ µ̂(µmin

C (a, d)).

First, we conduct a comparative statics analysis of µC . Lemma 6 shows the mono-
tonicity of λ in that λ(µC , a, d) is strictly decreasing in a and strictly increasing in d.
This immediately leads us to the following comparative statics result.32

Theorem 3.

(1) µmax
C (a, d) is strictly increasing in a and strictly decreasing in d.

(2) µmin
C (a, d) is strictly increasing in a and strictly decreasing in d for a range of

(a, d) with c < d < d̄(a), while it is strictly decreasing in a and strictly increasing
in d for a range of (a, d) with d̄(a) < d < d̂(a).

This is illustrated in Figure 6. Panel A illustrates the monotone comparative statics
result for a range of (a, d) with c < d < d̄(a), while Panel B illustrates the monotone
comparative statics result for a range of (a, d) with d̄(a) < d < d̂(a).

32Theorem 3 states that µmin
C (a, d) behaves in opposite directions to µmax

C (a, d) for a range of (a, d)
with d̄(a) < d < d̂(a). This occurs because we are interested in the three-mode equilibrium. If we
consider the sequential equilibrium that assigns one of C-mode, CDD-mode, and DDD-mode without
restricting its distribution to the interior of ∆, the µmin

C (a, d) behaves in a parallel way to µmax
C (a, d).

As we will discuss in Section 9, a no-leadership equilibrium (µC = 0) exists for a range of (a, d) with
d̄(a) < d < d̂(a) (and d̂(a) ≤ d < a). Therefore, Theorem 3-(2) is rewritten for µmin

C (a, d) over the
entire ∆ as stating that µmin

C (a, d) is (strictly) increasing in a and (strictly) decreasing in d, where the
strictness applies for a range of (a, d) with c < d < d̄(a). The same remark applies to all the results
on the minimum leadership distribution hereafter. This parallel monotonicity of µmin

C (a, d) must be
noticed when we test our theory in experiments using the comparative statics results. We will return
to this issue in Section 9 where we discuss the existence of a no-leadership equilibrium.
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Panel A

Panel B

Figure 6: Graphs of λ when d′ > d′′

Next, we consider the comparative statics of µCDD. Note in Lemma 1 that µCDD =
φ(T ∗

CDD(µ)) for a three-mode equilibrium distribution and recall from Lemma 2 that
T ∗

CDD(µ) is determined by α∗(µ) and β∗ as an area of α ≥ α∗(µ) and β ≥ β∗ in T . We
can show a comparative statics result of α∗(µ) and β∗.

Lemma 7.

(1) (a) α∗(µmax(a, d)) is strictly increasing in a and strictly decreasing in d.

(b) α∗(µmin(a, d)) is strictly increasing in a and strictly decreasing in d for a
range of (a, d) with c < d < d̄(a), while it is strictly increasing in d for a
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range with d̄(a) < d < d̂(a).33

(2) β∗ is strictly decreasing in a and constant in d.

This comparative statics result immediately leads us to the following comparative
statics of µCDD.

Theorem 4.

(1) For a range of (a, d) with α∗(µmax(a, d)) ≤ β∗, µmax
CDD(a, d) = φ(β > β∗) and it

is constant in d and strictly increasing in a. µmin
CDD(a, d) is parallel.

(2) (a) For a range of (a, d) with α∗(µmax(a, d)) > β∗, µmax
CDD(a, d) is strictly in-

creasing in d.

(b) For a range of (a, d) with α∗(µmin(a, d)) > β∗, µmin
CDD(a, d) is strictly in-

creasing in d for a range with c < d < d̄(a), while it is strictly decreasing in
d for a range with d̄(a) < d < d̂(a).

Note that µmax
CDD(a, d) ( and µmin

CDD(a, d)) may not be monotone with respect to a
for a range of (a, d) with α∗(µmax(a, d)) > β∗ ( and α∗(µmin(a, d)) > β∗) because
α∗(µmax(a, d)) ( and α∗(µmin(a, d)) for a range with c < d < d̄(a)) is strictly increasing
in a while β∗ is strictly decreasing in a.

Finally, we consider the comparative statics of µDDD. As is stated in Theorem 4,
µmax

CDD(a, d) and µmin
CDD(a, d) have a constant value φ(β > β∗) for a range of (a, d) with

α∗(µmax(a, d)) ≤ β∗ and α∗(µmin(a, d)) ≤ β∗, respectively. Therefore, the compara-
tive statics of µDDD for this range is obtained from the comparative statics of µC in
Theorem 3 and the comparative statics of β∗ in Lemma 7, as follows.

Theorem 5.

(1) For a range of (a, d) with α∗(µmax(a, d)) ≤ β∗, µmax
DDD(a, d) is strictly decreasing

in a and strictly increasing in d.

(2) For a range of (a, d) with α∗(µmin(a, d)) ≤ β∗, µmin
DDD(a, d) is strictly decreasing

in a and strictly increasing in d for a range of (a, d) with c < d < d̄(a), while it
is strictly decreasing in d for a range of (a, d) with d̄(a) < d < d̂(a).

Note that µmax
DDD(a, d) (and µmin

DDD(a, d)) may not be monotone with respect to a
and d for a range of (a, d) with α∗(µmax(a, d)) > β∗ (and α∗(µmin(a, d)) > β∗).
For example, for a range of (a, d) with α∗(µmax(a, d)) > β∗ and c < d < d̄(a),
µmax

C (a, d) is strictly decreasing in d and µmax
CDD(a, d) is strictly increasing in d so that

µmax
DDD(a, d) = 1 − µmax

C (a, d) − µmax
CDD(a, d) may or may not be increasing in d. Figure

7 below demonstrates that µmax
DDD(a, d) is not monotone in d.34

33α∗(µmin(a, d)) may not be monotone with respect to a for a range of (a, d) with d̄(a) < d < d̂(a).
34The relation α∗(µmax(a, d)) > β∗ applies to the parts “Inequity” and “Hybrid” of the graph in

Figure 7. The three categories of three-mode equilibrium in Figure 7 will be introduced formally in
Section 7.1.
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Figure 7: Non-monotonic move of µDDD under f(α, β) = 6β

6.2 Comparative statics of outcome distributions in the three-mode
equilibrium

The comparative statics of the three-mode equilibrium distribution enables us to con-
duct the comparative statics of the outcome distributions in the three-mode equilib-
rium. Recall from Table 5 that four kinds of outcomes are realized with positive proba-
bilities in a three-mode equilibrium: (C,C) at timing 1, C → C, C → D, and (D,D) at
timing 2. When a three-mode equilibrium with a three-mode equilibrium distribution µ
prevails, probabilities for outcomes (C,C) at timing 1, C → C, C → D, and (D,D) at
timing 2 are given by (µC)2, 2µCµCDD, 2µCµDDD, and (µCDD +µDDD)2 = (1−µC)2.
Therefore, the following is concluded from Theorems 3, 4, and 5.

Theorem 6.

(1) The probability of the outcome of (C,C) at timing 1 under µmax is strictly in-
creasing in a and strictly decreasing in d. The probability of the outcome of
(C,C) at timing 1 under µmin is strictly increasing in a and strictly decreasing
in d for a range of (a, d) with c < d < d̄(a) and it is strictly decreasing in a and
strictly increasing in d for a range of (a, d) with d̄(a) < d < d̂(a).

(2) The probability of the outcome of C → C under µmax is strictly increasing in a
and strictly decreasing in d for a range of (a, d) with α∗(µmax(a, d)) ≤ β∗. The
probability of the outcome of C → C under µmin is parallel for a range of (a, d)
with α∗(µmax(a, d)) ≤ β∗ and c < d < d̄(a), while it is strictly increasing in d for
a range of (a, d) with α∗(µmax(a, d)) ≤ β∗ and d̄(a) < d < d̂(a).

(3) The probability of the outcome of (D,D) at timing 2 under µmax is strictly de-
creasing in a and strictly increasing in d. The probability of the outcome of
(D,D) at timing 2 under µmin is strictly decreasing in a and strictly increasing
in d for a range of (a, d) with c < d < d̄(a), while it is strictly increasing in a
and strictly decreasing in d for a range of (a, d) with d̄(a) < d < d̂(a).
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The behaviors of the probabilities of the outcomes that are not stated in Theorem
6 are more complex. For example, the probability of the outcome C → C does not
necessarily move monotonically with respect to a and d for the region that Theorem
6-(2) does not cover. In this region, an increase in the probability of C-mode is partly
realized by having some conditional cooperator become a leader type. Because of this
shift from CDD-mode to C-mode, the matching probability of a leader type and con-
ditional cooperator becomes complex. Figure 8 shows an example of a nonmonotonic
move of the probability of the outcome C → C.35 A similar complexity applies to the
outcome C → D.

d

2µ
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µ
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D

Figure 8: Non-monotonic probability of C → C under f(α, β) = 6β

7 Who takes the leadership? - Fairness concerns, incen-
tive to lead, and leadership patterns -

Our third result is a characterization of leadership patterns. A leadership pattern is a
description of who takes the leadership and it is given by the set of leader types. When
a three-mode equilibrium with a distribution µ prevails in a prisoner’s dilemma game
PD((a, b, c, d), f), the leadership pattern of this equilibrium is the set T ∗

C(µ) and this
set depends on the parameters (a, b, c, d) and f in the prisoner’s dilemma. We charac-
terize the leadership patterns T ∗

C(µ) in the three-mode equilibrium. In particular, we
explore how each pattern is generated from the underlying incentive for each type to
lead and how the incentive to lead is connected to the fairness concerns of the type.

7.1 The incentive to lead and a leadership pattern under a given
belief

We begin by fixing a prisoner’s dilemma PD((a, b, c, d)f) and charactering the lead-
ership pattern under a given belief; that is, a best-response type set T ∗

C(µ) to an
35The relation α∗(µmax(a, d)) > β∗ applies to the parts “Inequity” and “Hybrid” of the graph in

Figure 8.
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arbitrarily given three-mode distribution µ.
To understand the best-response type set in light of the incentive to lead, let us

introduce an ordering of types by their degrees of incentive to lead.

Definition 3. Fix a positive number γ > 0. We say that a type (α, β) has a stronger
incentive to lead under the belief ratio γ than a type (α′, β′) when

(1) under any three-mode distribution µ with µDDD
µC

= γ, if the type (α′, β′) prefers
C to CDD and DDD, then the type (α, β) also prefers C to CDD and DDD,
and

(2) there exists a three-mode distribution µ with µDDD
µC

= γ under which the type
(α′, β′) does not prefer C to CDD and DDD, while the type (α, β) prefers C to
CDD and DDD.

We say that a type (α, β) has the strongest incentive to lead under the belief ratio γ
when no other type in T has a stronger incentive to lead under the belief ratio γ than
the type (α, β). This type is called the strongest incentive to lead type.

The notion of the strongest incentive to lead is important for our understanding of
leadership patterns. First, the best-response type set T ∗

C(µ) is not empty if and only if
the strongest incentive to lead type prefers C to CDD and DDD. In words, whether
the leadership behavior occurs with positive probabilities is identified by whether the
strongest incentive to lead type is willing to take the leadership. Second, when the
best-response type set T ∗

C(µ) is not empty, the strongest incentive to lead type serves
as a representative element of the set T ∗

C(µ). All the types in the set T ∗
C(µ) are ordered

according to the degree of incentive to lead from the top by the strongest incentive to
lead type to the lowest on the boundaries of T ∗

C(µ).
For each γ > 0, the set of the strongest incentive to lead types can be identified in

the following way. A type (α, β) prefers C to CDD and DDD under a belief µ if and
only if

U(α,β)(C, µ) > max[U(α,β)(CDD,µ), U(α,β)(DDD,µ)].

This condition is rewritten as

µCDD(a− d) > µDDD(d− (c− α(b− c))) + µC(max[a, b− β(b− c)] − a). (21)

The left-hand side is a benefit of leading; that is, a utility increase from inducing C from
the opponent who follows CDD. The right-hand side is a cost of leading, which is a
sum of a utility decrease from being betrayed by the opponent who follows DDD and a
utility decrease from losing an opportunity to betray the opponent who follows C. The
benefit of leading is independent of the type because it compares symmetric outcomes
(C,C) and (D,D). Therefore, when beliefs µ with a given belief ratio µDDD

µC
= γ are

considered, a type has a stronger incentive to lead than another type if and only if the
cost of leading is lower for the former type than for the latter type. The type who has
the strongest incentive to lead can be identified by minimizing the cost of leading, as
follows.

Lemma 8. Let γ > 0 be given. A set of types who has the strongest incentive to lead
under the belief ratio γ is {(0, 0)}, {(α, β) = t(0, 0) + (1 − t)(β∗, β∗)|0 ≤ t ≤ 1}, and
{(β∗, β∗)} for γ > 1, γ = 1, and γ < 1, respectively.
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The intuition of Lemma 8 is straightforward. An isocost curve of leading in the
type space is given by

µDDD(d− (c− α(b− c))) + µC(max[a, b− β(b− c)] − a) = constant. (22)

For a type (α, β) with β ≥ β∗, it holds that max[a, b− β(b− c)]− a = 0; that is, there
is no cost of losing an opportunity to betray the opponent who follows C because it is
the best for this type not to betray the opponent if he is to move at timing 2. Hence,
the isocost curve of leading (22) is vertical for a range of types (α, β) with β ≥ β∗. On
the other hand, for a type (α, β) with β < β∗, both kinds of costs of leading matter,
and the isocost curve of leading (22) becomes

µDDD(d− (c− α(b− c))) + µC((b− β(b− c)) − a) = constant.

The envy parameter α is the agent’s evaluation of the disadvantageous inequality b− c
in the cost of being betrayed and the guilt parameter β is that of the advantageous
inequality b − c in the cost of losing the opportunity to betray. The same size of
inequity b− c is evaluated in the opposite direction. Therefore, the slope of the isocost
curve of leading is dβ

dα = µDDD(b−c)
µC(b−c) = µDDD

µC
= γ. The isocost curve of leading (22)

corresponds to a lower cost of leading when it is located toward a lower α and a higher
β. Hence, the strongest incentive to lead type must lie in a subset of the boundary of
T with α = β and 0 ≤ β ≤ β∗. An extreme point (α, β) = (0, 0) of this subset becomes
a unique type of the strongest incentive to lead when γ > 1. The other extreme point
(α, β) = (β∗, β∗) of this subset becomes a unique type of the strongest incentive to
lead when γ < 1.

The two candidates for the strongest incentive to lead type, Materialist and the
type (β∗, β∗), represent two extreme cases of fairness concerns. The type (β∗, β∗)
maximizes β to minimize the effect of advantageous inequity on the cost of leading.
Maximizing β is accompanied by raising α to β∗ along the boundary of T with α = β.
This means that the type (β∗, β∗) is the type who places the minimum weight on the
cost of losing an opportunity to betray the opponent who follows C and the maximum
weight to the cost of being betrayed. In contrast, Materialist minimizes α to minimize
the effect of advantageous inequity on the cost of leading. Minimizing α is accompanied
by lowering β to 0. This means that Materialist is the type who places the maximum
weight on the cost of losing an opportunity to betray the opponent who follows C and
the minimum weight on the cost of being betrayed.

The two canonical forms of fairness concern held by Materialist and the type
(β∗, β∗) leads us to classify leadership patterns according to which form of fairness con-
cern leads to the leadership behavior. We may call a best-response type set T ∗

C(µ) an in-
equity concerned leader pattern (icl-pattern) when (β∗, β∗) ∈ T ∗

C(µ) and (0, 0) 6∈ T ∗
C(µ).

This occurs when the type (β∗, β∗) is the unique strongest incentive to lead type and
Materialist does not take the leadership. An opposite pattern in which (0, 0) ∈ T ∗

C(µ)
and (β∗, β∗) 6∈ T ∗

C(µ) may be called a materialist leader pattern (ml-pattern). This
occurs when Materialist is the unique strongest incentive to lead type and the type
(β∗, β∗) dose not take the leadership. When it happens to be that (0, 0) ∈ T ∗

C(µ) and
(β∗, β∗) ∈ T ∗

C(µ), we may call it a hybrid leader pattern (hl-pattern). This occurs in
a particular case of γ = 1 in which both Materialist and the type (β∗, β∗) have the
strongest incentive to lead. However, this also occurs generically when Materialist is
the unique strongest incentive to lead type and when the type (β∗, β∗) is the unique
strongest incentive to lead type.

Figure 1, which we used to explain best-response type sets in Section 4, illustrates
an inequity concerned leader pattern. The type (β∗, β∗) has the strongest incentive to
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lead and receives a surplus µCDD(a− d) − µDDD((d− c) + (b− a)) by leading. As we
move in the type space T by raising α and keeping β = β∗, this surplus is decreased
at a rate of µDDD(b − c). It is decreased to zero when α is increased to α∗(µ). The
boundary of the set T ∗

C(µ) is stretched out from the type (α∗(µ), β∗) vertically for a
range with β > β∗ and with a positive slope γ for a range with β < β∗. The set T ∗

C(µ)
is triangle shaped because (0, 0) 6∈ T ∗

C(µ).
Figure 9 illustrates a materialist leader pattern. Materialist has the strongest

incentive to lead and receives a surplus µCDD(a − d) − µDDD(d − c) − µC(b − a) by
leading. As we move in the type space T by raising α and keeping β = 0, this surplus
is decreased at a rate of µDDD(b − c). It is decreased to zero when α is increased to
α∗(µ)− β∗

γ . The boundary of the set T ∗
C(µ) is stretched out from the type (α∗(µ)− β∗

γ , 0)
with a positive slope γ. The set T ∗

C(µ) is also triangle shaped because (β∗, β∗) 6∈ T ∗
C(µ).

�

�

1

1

0 ��(µ)

��

⇥ = H(�|µ)

T �
CDD(µ)

T �
DDD(µ)

T �
C(µ)

Figure 9: Materialist leader

Figure 10 illustrates hybrid leader patterns. The set T ∗
C(µ) with γ < 1 is a case in

which the type (β∗, β∗) is the unique strongest incentive to lead type and the boundary
of the set T ∗

C(µ) is stretched out from the type (α∗(µ), β∗). It is quadrilateral shaped
because it also includes Materialist. The set T ∗

C(µ) with γ > 1 is a case in which
Materialist is the unique strongest incentive to lead type and the boundary of the set
T ∗

C(µ) is stretched out from the type (α∗(µ) − β∗

γ , 0). It is also quadrilateral shaped
because it also includes the type (β∗, β∗).
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Panel B: The case of γ > 1

Figure 10: Hybrid leader patterns

7.2 The incentive to lead and a leadership pattern in the three-mode
equilibrium

We characterize the leadership pattern that prevails in the three-mode equilibrium. In
the previous section, we studied the leadership pattern under a given belief by consider-
ing a three-mode distribution arbitrarily. In the three-mode equilibrium, however, the
leadership pattern is determined jointly with a three-mode distribution in the equilib-
rium. Therefore, we explore how a three-mode equilibrium distribution is determined
depending on the underlying incentive for each type to lead and how the incentive to
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lead in the equilibrium is connected with the fairness concerns of the type. We explore
it by studying how the leadership pattern in the three-mode equilibrium differs in each
prisoner’s dilemma. For this purpose, we combine the comparative statics results in
Section 6 and the results on leadership patterns under a given belief in the previous
Subsection 7.1, and we answer two particular questions: (1) how the leadership pat-
tern in the three-mode equilibrium differs according to the prisoner’s dilemmas, and
(2) how the type of the strongest incentive to lead in the three-mode equilibrium differs
according to the prisoner’s dilemma.

7.2.1 Comparison of the leadership patterns

First, we compare the leadership patterns in the three-mode equilibrium for different
prisoner’s dilemmas. Formally, we consider how the leadership patterns T ∗

C(µmax(a, d))
and T ∗

C(µmin(a, d)) differ according to prisoner’s dilemma parameters (a, d). To com-
pare T ∗

C(µmax(a, d)) and T ∗
C(µmin(a, d)) for different values of (a, d), we introduce the

following ordering of sets of types who take the leadership.

Definition 4. Let TC and T ′
C be sets of types who take the leadership. We say that TC

is the leadership pattern of a more inequity concerned leader than T ′
C if the following

conditions hold.

(1) ∃(α̂, β̂) ∈ TC s.t.∀(α′, β′) ∈ T ′
C ; (α′, β′) ≤ (α̂, β̂)36, and

(2) ∀(α′, β′) ∈ T ′
C \ TC ,∀(α, β) ∈ TC \ T ′

C ; (α′, β′) ≤ (α, β).

Conditions (1) and (2) define a set of natural requirements for a set TC of types that
consists of more inequity concerned types than another set T ′

C . Condition (1) requires
that there is a type (α̂, β̂) in TC that is dominant over T ′

C in the sense that the type
(α̂, β̂) is more inequity conscious in both envy and guilt for any type in T ′

C . This
dominance also implies that a set difference TC \ T ′

C exists and the dominant type
(α̂, β̂) lies in this difference. Condition (2) requires that the set differences TC \ T ′

C

and T ′
C \ TC are in a specific relation such that the set difference TC \ T ′

C is dominant
over the set difference T ′

C \ TC in the sense that any type in the set difference TC \ T ′
C

is more inequity concerned in both envy and guilt than any type in the set difference
T ′

C \ TC .37 In words, the set TC is obtained by adding types to and extracting types
from the set T ′

C in such a way that any added type is more inequity conscious than
any extracted type and some added type is also more inequity conscious than all the
remaining types.

Recall from the analysis in Subsection 7.1 that a leadership pattern T ∗
C(µ) is de-

termined if we have three values α∗(µ), β∗, and γ∗(µ) that define the boundary of
T ∗

C(µ) where we denote γ∗(µ) ≡ µDDD
µC

. These numbers for the maximum leadership
distribution and the minimum leadership distribution depend on prisoner’s dilemma
parameters (a, d), as follows. (Lemma 9-(1) and (2) are restatements of Lemma 7.)

Lemma 9.

36We denote (α′, β′) ≤ (α̂, β̂) if and only if α′ ≤ α̂, β′ ≤ β̂, and at least one inequality holds strictly.
37Economists have applied various set orderings for the purpose of monotone comparative statics.

The set order advocated by Topkis (1998) and Milgrom and Shannon (1994) is the usual strong order.
Depending on the monotone comparative statics, however, economists sometimes need orderings that
fit the objectives of their analysis. The set order by dominance in set differences is one of the naturally
conceivable set orderings. Indeed, Kukushkin (2013) considers the set ordering by condition (2).
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(1) α∗(µmax(a, d), a, d) is strictly increasing in a and strictly decreasing in d. α∗(µmin(a, d), a, d)
is strictly increasing in a and strictly decreasing in d for a range of (a, d) with
c < d < d̄(a).

(2) β∗ is strictly decreasing in a and independent of d.

(3) γ∗(µmax(a, d)) is strictly decreasing in a and strictly increasing in d. γ∗(µmin(a, d))
is strictly decreasing in a and strictly increasing in d for a range of (a, d) with
c < d < d̄(a).

This characterization of boundaries of the set of types who take the leadership in the
three-mode equilibrium establishes the following comparison of leadership patterns.

Theorem 7.

(1) If a > a′ and d < d′, then the leadership pattern T ∗
C(µmax(a, d), a, d) in the

maximum leadership distribution in prisoner’s dilemma PD((a, b, c, d), f) is a
leadership pattern of more inequity concerned leader than the leadership pat-
tern T ∗

C(µmax(a′, d′), a′, d′) in the maximum leadership distribution in prisoner’s
dilemma PD((a′, b, c, d′), f).

(2) If a > a′, d < d′, and d′ < d̄(a′), then the leadership pattern T ∗
C(µmin(a, d), a, d)

in the minimum leadership distribution in prisoner’s dilemma PD((a, b, c, d), f)
is a leadership pattern of more inequity concerned leader than the leadership pat-
tern T ∗

C(µmin(a′, d′), a′, d′) in the minimum leadership distribution in prisoner’s
dilemma PD((a′, b, c, d′), f).

Roughly speaking, Theorem 7 states that as a is increased and d is decreased, the lead-
ership pattern in the equilibrium becomes a more inequity concerned leader pattern.

The intuition for this comparison is as follows. For any type (α, β) ∈ T , if a
is increased and d is decreased in the condition (21) for the type (α, β) to lead
under a given belief µ, the benefit of leading is increased and the cost of leading
is decreased. Hence, when we compare prisoner’s dilemmas PD((a, b, c, d), f) and
PD((a′, b, c, d′), f) with a > a′ and d < d′ and we imagine that the maximum leadership
distribution µmax(a′, d′) of prisoner’s dilemma PD((a′, b, c, d′), f) prevails as a belief
in both prisoner’s dilemmas, more types in prisoner’s dilemma PD((a, b, c, d), f) take
the leadership behavior as best-responses to µmax(a′, d′) than in prisoner’s dilemma
PD((a′, b, c, d′), f), that is, T ∗

C(µmax(a′, d′), a′, d′) ⊂ T ∗
C(µmax(a′, d′), a, d). Hence, the

leadership pattern in PD((a, b, c, d), f) tends to be of a more inequity concerned leader
than the leadership pattern in PD((a′, b, c, d′), f) in the sense of an expanding set of
types who take the leadership. However, the expansion of the set of types who take the
leadership causes the probability of C-mode to be increased in PD((a, b, c, d), f). This
is the driving force for the result that µmax

C (a′, d′) < µmax
C (a, d), which we established in

Theorem 3. As we discussed in a comparison of incentives to lead between Materialist
and the type (β∗, β∗), an increase in the probability of C-mode reduces the incentive
to lead for those types with low guilt parameters including Materialist. The types with
low guilt parameters are more inclined to follow DDD. This effect reduces the belief
ratio γ from γ∗(µmax(a′, d′)) to γ∗(µmax(a, d)). Thus, the change in probabilities of C-
mode further shifts the leadership pattern in PD((a, b, c, d), f) toward a more inequity
concerned leader. The same explanation applies to a comparison of T ∗

C(µmin(a, d), a, d)
and T ∗

C(µmin(a′, d′), a′, d′) for a range of d < d′ < d̄(a).
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7.2.2 Comparison of who has the strongest incentive to lead

Second, we compare the leadership patterns in the three-mode equilibrium for different
prisoner’s dilemmas more specifically in terms of who has the strongest incentive to
lead. Lemma 8 provides the criterion for which of Materialist or the type (β∗, β∗) is the
type of the strongest incentive to lead. Together with Lemma 9-(3), we know that when
we compare prisoner’s dilemmas PD((a, b, c, d), f) and PD((a′, b, c, d′), f) with a > a′

and d < d′, the type who has the strongest incentive to lead is more likely to be the
type (β∗, β∗) rather than Materialist in PD((a, b, c, d), f) than in PD((a′, b, c, d′), f).
We can state this fact more precisely for the maximum leadership distribution and for
the minimum leadership distribution, as follows.

Theorem 8.

(1) For each d ∈ (c, b), there exists amax
L (d) with d̂−1(d) ≤ amax

L (d) < b such that in
a prisoner’s dilemma PD((a, b, c, d), f) for a range c < d < d̂(a), the strongest
incentive to lead type in the three-mode equilibrium distribution µmax(a, d) is
Materialist if a < amax

L (d) and the type (β∗, β∗) if a > amax
L (d).

(2) For each d ∈ (c, b), there exists amin
L (d) with d̄−1(d) ≤ amin

L (d) < b such that in
a prisoner’s dilemma PD((a, b, c, d), f) for a range c < d < d̄(a), the strongest
incentive to lead type in the three-mode equilibrium distribution µmin(a, d) is Ma-
terialist if a < amin

L (d) and the type (β∗, β∗) if a > amin
L (d).

(3) The two functions a = amax
L (d) and a = amin

L (d) are increasing and related as
amax

L (d) ≤ amin
L (d) for any d ∈ (c, b).

Theorem 8 states that a class of prisoner’s dilemma that admits a three-mode equilib-
rium is divided into a Materialist class (a subclass in which Materialist is the unique
strongest incentive to lead type) and a β∗-class (a subclass in which the type (β∗, β∗)
is the unique strongest incentive to lead type). Furthermore, roughly speaking, the
β∗-class is located north-west (a higher a and lower d) of the Materialist class.

Theorem 8 together with Theorem 7 suggests the following relationship between
a prisoner’s dilemma and a leadership pattern in the three-mode equilibrium in the
dilemma. Suppose that some prisoner’s dilemma PD((a, b, c, d), f) has a three-mode
equilibrium with the materialist leader pattern.38 Then, as we move from PD((a, b, c, d), f)
by lowering d and raising a, the corresponding leadership patterns in the three-mode
equilibrium turn from a materialist leader pattern into a hybrid pattern and then an
inequity concerned pattern.39 Figure 11 demonstrates that this leadership pattern
transition occurs for a particular prior f(α, β) = 6β.

38Note that although Theorem 8 guarantees that the β∗-class is nonempty, it does not guarantee
that the Materialist class is. If it were the case that d̂−1(d) = amax

L (d) and d̄−1(d) = amin
L (d) for all

d ∈ (c, b), then every prisoner’s dilemma with the three-mode equilibrium is in the β∗-class. Then, the
materialist leader pattern would never prevail in the equilibrium.

39Theorem 8 guarantees that a hybrid pattern prevails in some prisoner’s dilemma PD((a, b, c, d), f)
because, as long as a is increased close enough to b, PD((a, b, c, d), f) belongs to the β∗-class. However,
as we will explore below in Appendix B, it may be the case for some prior f that an inequity concerned
pattern never prevails in the three-mode equilibrium.
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Figure 11: Leadership pattern transitions

More precisely, we can provide a sufficient condition on the prisoner’s dilemma
under which the leadership pattern in the three-mode equilibrium is a materialist
leader pattern.

Theorem 9. Let d̄ml(a) ≡ a − (b − c)minα∗∈[0,ᾱ] φ(β < β∗|α∗ ≤ α). Suppose that
minα∗∈[0,ᾱ] φ(β < β∗|α∗ ≤ α) > 0. Then,

(1) d̄ml(a) is strictly increasing, d̄ml(a) < a, lim
a→c

d̄ml(a) = c− (b− c), lim
a→b

d̄ml(a) = b,

and there exists āml ∈ (c, b) such that d̄ml(āml) = c.

(2) for each a ∈ (c, ā′ml), if max(c, d̄ml(a)) < d < d̂(a), then the leadership pattern in
the three-mode equilibrium in PD((a, b, c, d), f) is a materialist leader pattern.

Figure 12 illustrates Theorem 9.40 The curve d = d̂(a), which is identified in
Theorem 2, divides the space of a normalized prisoner’s dilemma and a three-mode
equilibrium exists in PD((a, b, c, d), f) if and only if it is located north-west of the
curve d = d̂(a). The curve d = d̄ml(a) crosses the curve d = d̂(a). The area between
the curve d = d̄ml(a) and the curve d = d̂(a) is a subset of a prisoner’s dilemma
in which the leadership pattern in the three-mode equilibrium in PD((a, b, c, d), f) is
guaranteed to be a materialist leader pattern.

40Figure 12 is drawn for the uniform distribution over T = {(α, β)|α ≥ β, 0 ≤ α, β ≤ 1}, for which
minα∗∈[0,ᾱ] φ(β < β∗|α∗ ≤ α) = β∗ > 0.
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Figure 12: Sufficient condition for materialist leader pattern under f(α, β) = 2

The bound d̄ml(a) identified in Theorem 9 has the following simple meaning. Take
any α∗ ≥ β∗ and suppose that all the types (α, β) with α < α∗ follow C, while a type
(α, β) with α > α∗ follows CDD if β > β∗ and DDD if β < β∗. Then, the belief µ that
is consistent with this Bayesian strategy s : T → S is µC = φ(TC(s)) = φ(α∗ > α),
µCDD = φ(TCDD(s)) = φ(α∗ ≤ α,β ≥ β∗), and µDDD = φ(TDDD(s)) = φ(α∗ ≤
α,β < β∗). Consider a player of type (β∗, β∗). When d > d̄ml(a), he prefers CDD to
C given this belief µ because

U(β∗,β∗)(CDD,µ) − U(β∗,β∗)(C, µ) = (b− c)φ(α∗ ≤ α)
[
φ(β < β∗|α∗ ≤ α) − a− d

b− c

]
> 0.

Thus, the condition d > d̄ml(a) means a situation in which the type (β∗, β∗) has an
incentive not to take the leadership behavior if all the types with α < α∗ take the
leadership, all the types with α ≥ α∗ and β ≥ β∗ follow CDD, and all the others
follow DDD. In such a situation, the type (β∗, β∗) never takes the leadership in
any equilibrium, which would mean α∗ = α∗(µ) > β∗ for the corresponding belief µ.
Therefore, only the three-mode equilibrium with a materialist leader pattern exists.

Although a materialist leader pattern prevails in a three-mode equilibrium in some
prisoner’s dilemmas for any prior f , there may exist no three-mode equilibrium with
an inequity concerned leader pattern in any prisoner’s dilemma, depending on a prior
f . The uniform distribution over a type space T = {(α, β)|α ≥ β, 0 ≤ α, β ≤ 1} is
an example (see Appendix B). However, we can provide a sufficient condition for the
prisoner’s dilemma and a prior under which the leadership pattern in the three-mode
equilibrium is an inequity concerned leader pattern.

Theorem 10. For a, b, c with c < a < b and f given, if

φ
(
α < β∗(1 − β∗)

φ(β > β∗)
1 − φ(β > β∗)

∣∣∣β > β∗
)
> 1 − β∗, (23)

then there exists d̄icl(a) ∈ (c, a) such that

(1) c < d̄icl(a) < d̄(a)

(2) for any d ∈ (c, d̄icl(a)), there exists a three-mode equilibrium in PD((a, b, c, d), f)
and any three-mode equilibrium is an inequity concerned leader pattern.
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The intuition of Theorem 10 is as follows. A type (α, β) with β > β∗ is the type who
is a potential conditional cooperator. The condition (23) requires that the distribu-
tion f over the set of potential conditional cooperators is more concentrated toward
lower envy types and provides an explicit threshold β∗(1 − β∗) φ(β>β∗)

1−φ(β>β∗) for the envy
parameter and an explicit bound 1−β∗ for the probability of an envy parameter being
lower than the threshold. Note from Lemma 2 that among the potential conditional
cooperators it is those with lower envy parameters that in fact take the leadership
and choose C at timing 1 rather than behave as conditional cooperators. Therefore,
the condition (23) makes the distribution of C and CDD chosen by the potential con-
ditional cooperators concentrated toward a choice of C. This induces Materialist to
follow DDD and betray the choice of C made by the potential conditional cooperators
with low envy parameters rather than to follow C and take the leadership himself
in expectation of inducing the conditional cooperator with high envy parameters to
respond with C. Hence, only an inequity concerned leader pattern is possible.

8 An extension to many timings

So far we have considered a prisoner’s dilemma in which a player chooses C or D at one
of two timings he prefers. The theory, however, applies to a prisoner’s dilemma with
many timings in general. The mechanism of leadership elucidated by our analysis is
also valid and our conclusion on the resolution of social dilemmas remains unchanged
even if we allow a player to choose his timing of move from not only two but many
timings.41

Suppose that there are K possible timings from timing 1 to timing K with 2 ≤
K < ∞. Consider a prisoner’s dilemma in which a player is allowed to choose C or
D at a timing from K possible timings. We can extend the notion of a three-mode
strategy naturally to this prisoner’s dilemma with K timings. Ck-mode is a strategy
that commands a player to take the leadership behavior at timing k; that is, a strategy
that prescribes ∅ for timings 1 to k− 1 and C for timing k when his opponent chooses
∅ at all the timings from 1 through k− 1.42 CDDk-mode is a strategy that prescribes
∅ for timings 1 to k − 1, and prescribes C for timing k if his opponent chooses C
before timing k, D if his opponent chooses D before timing k, and D if his opponent
chooses ∅ at all the timings 1 through k− 1. DDDk-mode is parallel to CDDk-mode.
A Bayesian strategy is a three-mode strategy for a prisoner’s dilemma with K timings
if there exists k∗ with 1 ≤ k∗ < K such that a player follows either a Ck-mode with
k ≤ k∗, a CDDk-mode with k > k∗, or a DDDk-mode with k > k∗, and a proba-
bility of some Ck-mode being followed, a probability of some CDDk-mode being fol-
lowed, and a probability of some DDDk-mode being followed are positive and summed
to one; that is, 0 < φ(∪1≤k≤k∗TCk

), φ(∪k∗<k≤KTCDDk
), φ(∪k∗<k≤KTDDDk

) < 1, and
φ(∪1≤k≤k∗TCk

) + φ(∪k∗<k≤KTCDDk
) + φ(∪k∗<k≤KTDDDk

) = 1 where TCk
, TCDDk

,
TDDDk

denote the set of types who follow Ck-mode, CDDk-mode, and DDDk-mode

41We thank Klaus Schmidt for suggesting this point to us.
42Precisely speaking, there are two distinguished Ck-mode, depending on the prescriptions when

the opponent moves before the prescribed leadership timing k. One Ck-mode prescribes the response
C at timing k to his opponent’s choice of C before timing k and the response D to his opponent’s
choice of D. The other Ck-mode prescribes the response with D at timing k to any choice by the
opponent before timing k. When a player follows Ck-mode in a three-mode strategy, a player with
type β ≥ β∗ follows the former Ck-mode, while a player with type β < β∗ follows the latter Ck-mode.
This distinction of two distinguished modes of leadership did not arise in a prisoner’s dilemma with
two timings, because there is no pretiming before timing 1, for which C-mode prescribes the leadership
behavior of choosing C.
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respectively. A three-mode strategy with a threshold timing k∗ divides K timings into
a span of earlier timings k = 1, · · · , k∗ in which the leadership behavior occurs and a
span of later timings k = k∗ + 1, · · · ,K in which the follower behaviors occur.

A three-mode strategy in a prisoner’s dilemma with K timings is called a two-
timing three-mode strategy if it is a particular three-mode strategy with k∗ such that
a player follows one of Ck∗-mode, CDDk∗+1-mode, or DDDk∗+1-mode. A two-timing
three-mode strategy is special in that a player is supposed to move with positive
probabilities at only two adjacent timings among K available timings.

There is a natural correspondence of a two-timing three-mode strategy with a
three-mode strategy in a prisoner’s dilemma with two timings. Consider a three-
mode strategy s in a prisoner’s dilemma with two timings. Then, for each k∗ with
1 ≤ k∗ < K, the naturally corresponding two-timing three-mode strategy with a
threshold k∗ in a prisoner’s dilemma with K timings assigns Ck∗-mode, CDDk∗+1-
mode, and DDDk∗+1-mode to those types (α, β) ∈ TC(s), (α, β) ∈ TCDD(s), and
(α, β) ∈ TDDD(s), respectively. This natural correspondence is shown to preserve the
equilibrium condition, as follows.

Theorem 11. Consider a three-mode strategy s in a prisoner’s dilemma with two tim-
ings. Then, the corresponding two-timing three-mode strategy in a prisoner’s dilemma
with K timings is a sequential equilibrium if and only if s is a sequential equilibrium.

When a two-timing three-mode strategy with a threshold k∗ is played in a prisoner’s
dilemma with K timings, there are opportunities for players to take the leadership
behavior at timings k = 1, · · · , k∗ − 1 ahead of any planned moves of his opponent.
However, these opportunities are not taken. The reason is that the benefit of leadership
is to induce the choice of C from the opponent who follows CDDk∗+1. This benefit
is fully utilized if the leadership behavior is taken before k∗ + 1. On the other hand,
taking the leadership behavior of choosing C before k∗ opens an opportunity for the
opponent to observe this choice of C irrespective of the opponent’s strategy. This is
harmful if the opponent who follows Ck∗ is a type (α, β) with β < β∗. This opponent
responds with D to a choice of C made at any timing k before k∗, while the opponent
chooses C given that no player moves before k∗. Thus, taking the leadership behavior
before timing k∗ simply increases the risk of being betrayed. This force makes a player
concentrate on timing k∗ for the leadership behavior.

The force of betrayal risk of early leadership exists when a player considers the
leadership in any three-mode strategy. We can show that any three-mode equilibrium
with a threshold k∗ in a prisoner’s dilemma with K timings is essentially a two-timing
three-mode strategy in the following sense.

Theorem 12. Consider a three-mode strategy with a threshold k∗ in a prisoner’s
dilemma with K timings. If it is a sequential equilibrium, then

(1) φ(TC1) = · · · = φ(TCk∗−1
) = 0 and φ(TCk∗ ) > 0, and

(2) φ(TCDDk∗+1
) > 0.

Property (1) means that the leadership behavior must take place at exactly one timing
k∗ in a three-mode equilibrium with a threshold k∗. Property (2) means that the
follower behavior based on the conditional cooperation must emerge with a positive
probability at the adjacent timing k∗ + 1.

An inessential delay of CDDk-mode or DDDk-mode with k > k∗ + 1 may be
possible in a three-mode equilibrium with a threshold k∗. For example, if s is a three-
mode equilibrium in a prisoner’s dilemma with two timings, then a combination of
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Ck∗-mode for TC(s), CDDk∗+1-mode for TCDD(s), and DDDk-mode for TDDD(s) for
any k with k∗ + 1 ≤ k ≤ K is supported by a sequential equilibrium in a prisoner’s
dilemma with K timings.

In spite of this kind of possible delay, however, a distribution (φ(TCk∗ ), φ(∪k∗<k≤KTCDDk
),

φ(∪k∗<k≤KTDDDk
)) over C-mode, CDD-mode, and DDD-mode in any three-mode

equilibrium in a prisoner’s dilemma with K timings must correspond to some three-
mode equilibrium distribution µ in a prisoner’s dilemma with two timings in that
µC = φ(TCk∗ ), µCDD = φ(∪k∗<k≤KTCDDk

), and µDDD = φ(∪k∗<k≤KTDDDk
), be-

cause it is also a three-mode equilibrium for any type who follows a CDDk-mode or
DDDk-mode with k > k∗ + 1 to follow CDDk∗+1-mode or DDDk∗+1-mode, respec-
tively. Hence, as far as an outcome distribution is concerned, our conclusion in a
prisoner’s dilemma with two timings remains unchanged when we allow many timings
in a prisoner’s dilemma.

9 Discussion

We studied the leadership in a prisoner’s dilemma by considering a three-mode equilib-
rium in a Bayesian model of a prisoner’s dilemma with endogenous moves. We briefly
discuss some issues that we excluded from our analysis.

9.1 Other equilibria

Although we focused on the three-mode equilibrium, there may exist other equilibria
in PD.

9.1.1 Other leadership equilibrium

We studied the leadership in a prisoner’s dilemma with the notion of the three-mode
equilibrium in which players follow one of three behavior modes C, CDD, or DDD.
Discussion on other possibilities of the emergence of leadership is in order.

One can show that the leadership is never realized by an equilibrium in which
players follow one particular behavior mode or one of two behavior modes. However,
when there exists a three-mode equilibrium in a prisoner’s dilemma, leadership can be
realized by an alternative equilibrium in which players follow a behavior mode from a
different set of three behavior modes: C, CDD, and D that prescribes a choice of D
at timing 1. The type who follows DDD in our three-mode equilibrium follows D in
this alternative equilibrium. The incentive for players to follow D in the alternative
equilibrium is similar to the incentive for them to follow DDD in our three-mode
equilibrium. Therefore, the alternative equilibrium can be regarded as substantially
the same as our three-mode equilibrium.

There might exist an equilibrium with a more complex set of behavior modes in
some prisoner’s dilemma. From the above discussion, an obvious one is a four-mode
equilibrium in which players follow one of four behavior modes: C, CDD, DDD, or D.
This is a combination of our three-mode equilibrium and the alternative three-mode
equilibrium.

Furthermore, one can consider a five-mode equilibrium in which players follow one
of five behavior modes: C, CDD, DDD, D, or CDC, which prescribes aC = C,
aD = D, and a∅ = C. The additional behavior mode CDC differs from CDD in that
a player chooses C at timing 2 when his opponent postpones his choice to timing 2.
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We can verify that the abovementioned equilibria exhaust the list of equilibrium
in which leadership is realized. We focused on our three-mode equilibrium in our
analysis of leadership in a prisoner’s dilemma because it is the simplest manner in
which leadership is realized in a prisoner’s dilemma.

9.1.2 No-leadership equilibrium

We studied the emergence of leadership in equilibrium in a prisoner’s dilemma. How-
ever, there may exist in the same prisoner’s dilemma another sequential equilibrium
in which both players choose D.

In particular, consider a wait-and-defect equilibrium in which all the types postpone
their choices to timing 2 and then choose D. From the analysis leading to Lemma 2
and Lemma 3, it is easy to see that this sequential equilibrium must assign CDD to
those types with β > β∗ and DDD to those types with β < β∗. By the discussion
after Theorem 1, such a strategy is a sequential equilibrium strategy if and only if
the (0, 0) type has no incentive to deviate to choosing C at timing 1; that is, if and
only if d̄(a) ≤ d where d̄(a) is the sufficiency bound for the existence of a three-mode
equilibrium in Corollary 1.

Recall from Theorem 2 that there exists a threshold d̂(a) such that there exists
a three-mode equilibrium if and only if d < d̂(a), where d̄(a) ≤ d̂(a) and the thresh-
old d̂(a) may or may not coincide with the sufficiency bound d̄(a). Then, we have
conditions for combinations of the (C,C) outcome by the three-mode equilibrium and
the (D,D) outcome by the wait-and-defect equilibrium in terms of payoff parameters
a, b, c, d and a type density f . For d < d̄(a), a three-mode equilibrium exists and the
wait-and-defect equilibrium does not exist. Then, it is not possible for all the players
to wait and choose D at timing 2. For d̄(a) ≤ d < d̂(a), both a three-mode equilibrium
and the wait-and-defect equilibrium exist.43 Then, the players need to coordinate on
a three-mode equilibrium to achieve cooperation. For d̂(a) < d, a three-mode equilib-
rium does not exist and the wait-and-defect equilibrium exists. Then, it is not possible
to achieve cooperation through the leadership by a three-mode equilibrium.

For a prisoner’s dilemma with d < d̄(a) in which a three-mode equilibrium exists
and the wait-and-defect equilibrium does not exist, there still remains the possibility
of the (D,D) outcome by a wider class of equilibria s : T → S that assigns to each
type (α, β) either D, CDD, or DDD. This strategy prescribes an early defection
at timing 1 for those types who are assigned D. The analysis leading to Lemma 2
and Lemma 3 states that CDD must be assigned only to those types with β ≥ β∗

and DDD must be assigned only to those types with β ≤ β∗. This means that 0 ≤
φ(TCDD(s)) ≤ φ(β > β∗). By the same argument as the discussion after Theorem 1,
such a s is a sequential equilibrium strategy if and only if the (0, 0) type has no incentive
to deviate from s by choosing C at timing 1; that is, if and only if φ(TCDD(s))a +
(1 − φ(TCDD(s)))c ≤ d. This condition is rewritten as 0 ≤ φ(TCDD(s)) ≤ µ̄CDD(d)
by defining µ̄CDD(d) = min(d−c

a−c , φ(β > β∗)). When d < d̄(a), one can find such a
43As we remarked in footnote 32, this fact must be noted when we test our theory by experiments.

The theory of the three-mode equilibrium implies that the leadership behavior should be observed
at a nonnegligible frequency in a prisoner’s dilemma with d̄(a) < d < d̂(a). However, the existence
of a no-leadership equilibrium may cause subjects to rarely take the leadership behavior in such a
prisoner’s dilemma. Furthermore, when subjects play various prisoner’s dilemmas with c < d < d̂(a),
the observed frequency of the leadership behavior may exhibit a monotone decrease in d over the whole
range (c, d̂(a)), although the comparative statics results of the three-mode equilibrium (Theorem 3)
states that µmin

C (a, d) for the three-mode equilibrium is strictly decreasing in d over the range (c, d̄(a))
and strictly increasing in d over the range (d̄(a), d̂(a)). Hence, we should not rush to overthrow our
theory of leadership even if the data show the overall monotonicity rather than the asymmetry at d̄(a).
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s that 0 ≤ φ(TCDD(s)) ≤ µ̄CDD(d) < φ(β > β∗). This means that if many types
who would become conditional cooperators (that is, those types with β > β∗ with
a probability more than φ(β > β∗) − µ̄CDD(d) > 0) do not wait until timing 2 and
choose D early at timing 1, the uncooperative outcome (D,D) prevails in equilibrium.
Then, to achieve cooperation through leadership, the players need to coordinate on a
three-mode equilibrium.

9.1.3 Cooperation without leadership

We studied the issue of time and social dilemmas by focusing on a mechanism in which
the leadership resolves social dilemmas through dynamic decision making. However,
even when agents have the freedom to choose the timing of moves, cooperation may
be realized without leadership.

We say that a Bayesian strategy involves the leadership if it generates a positive
probability for an outcome in which an agent chooses C at timing 1 and the other
agent waits and chooses C at timing 2. We say that a Bayesian strategy supports
cooperation without leadership if it does not involve the leadership and it generates
a positive probability for an outcome in which both agents choose C. Consider the
following Bayesian strategy s : T → S which assigns either DDD, CDD, CDC, or D
under a belief µ ∈ ∆({DDD,CDD,CDC,D}).

s(α, β) =


DDD if β ≤ β∗

CDD if β∗ < β ≤ min[ b−d
b−c , β

∗ + µCDD+µDDD
µCDC

(α+ d−c
b−c )]

CDC if α ≤ µCDC
µCDD+µDDD

a−d
d−c − d−c

b−c and β > β∗ + µCDD+µDDD
µCDC

(α+ d−c
b−c )

D if α > µCDC
µCDD+µDDD

a−d
d−c − d−c

b−c and β > b−d
b−c .

(24)
This Bayesian strategy does not involve the leadership because it does not assign C.
However, when both agents are assigned CDC, they wait and choose C at timing 2.
Hence, this Bayesian strategy supports cooperation without leadership.

One can show that the Bayesian strategy (24) may be a sequential equilibrium, de-
pending on a prior f44, and that there is no other sequential equilibrium that supports
cooperation without leadership.

The cooperation occurs by simultaneous choices of C at timing 2 in the equilibrium
in the Bayesian strategy (24). However, note that the freedom to choose the timing of
moves plays a crucial role in realizing this cooperation. Although the types who follow
DDD, CDD, and CDC choose to move at timing 2, the types who follow D choose
to move at timing 1. The types who are assigned D are those types who are endowed
with the highest α and the highest β. They most dislike both being betrayed and
betraying. These types prefer choosing D at timing 1 because, as long as they wait
until timing 2, they cannot avoid either being betrayed by the types who follow DDD
and CDD or betraying the types who follow CDC, so that choosing D at timing 1 is
the only way to guarantee (D,D), which involves neither being betrayed nor betraying.
This behavior by the most fairness concerned types makes the other types refrain from
taking the leadership. In particular, the types who follow CDC are willing to choose
C at timing 2 in spite of the risk of being betrayed by the types who follow DDD and

44To see this, consider a degenerate prior that assigns a probability 0.2 to the type (0, 0), a probability
0.7 to the type ( 2

3
, 2

3
), and a probability 0.1 to the type (1, 1). Then, consider a special case of the

Bayesian strategy (24) that assigns DDD to the type (0, 0), CDC to the type ( 2
3
, 2

3
), and D to the

type (1, 1). Then, this strategy is a sequential equilibrium in a prisoner’s dilemma with a = 2, b =
3, c = 0, d = 1. Smooth out this degenerate prior over a type space T = {(α, β)|0 ≤ α ≤ 1, β ≤ α}.
Then, a Bayesian strategy (24) under the resulting prior continues to be a sequential equilibrium.
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CDD. If they choose C at timing 1 instead of timing 2, they would be better off if
there were no types who follow D, because those types who follow CDD will respond
with C. In fact, however, choosing C at timing 1 also entails an additional risk of
being betrayed by the type who follows D, which can be avoided if they stick to the
assigned CDC-mode. Thus, it is essential for the cooperation at timing 2 that the
most fairness concerned types choose to move at timing 1 and the other types choose
to move at timing 2 under the freedom to choose the timing of moves.

9.2 Other models of a prisoner’s dilemma in the presence of fairness
concerns

To study the issue of time and social dilemmas in the presence of fairness concerns,
we consider a Bayesian model of a prisoner’s dilemma with endogenous moves. In
particular situations, a prisoner’s dilemma may be modeled in rather restricted ways.

9.2.1 Complete information

We studied the leadership in a prisoner’s dilemma under incomplete information about
player’s preferences. However, there are also some cases that are appropriate to be
modeled as complete information games. We briefly discuss leadership in a prisoner’s
dilemma under complete information.

One can show that, under complete information of preferences, (C,C) is realized
by leadership if at least one of the players is a high-guilt type. Namely, if a player
is a high-guilt type and the other player is a low-guilt type, then the low-guilt type
takes the leadership and the high-guilt type becomes a follower in equilibrium. If both
players are high-guilt types, then there are two leadership equilibria and each player
becomes a leader in one of the equilibria.

The mechanism of leadership under complete information of preferences is much
simpler than the mechanism of this paper. A player becomes a leader because he knows
that his opponent is a high-guilt type who becomes a conditional cooperator. Neither
the envy parameter nor the guilt parameter of the leader plays a role in making him
a leader. A follower becomes a follower because he knows that his opponent takes the
leadership behavior knowing that the follower becomes a conditional cooperator. The
envy parameter of the follower plays no role in making him a follower.

In contrast, in the leadership mechanism of this paper, both the envy parameter
and the guilt parameter play essential roles in making a player a leader and making
a player a follower. This enables us to explain not only how the leadership emerges
endogenously, but also why a particular player becomes a leader when a player’s pref-
erences are his private information.

9.2.2 Exogenous sequence of moves

We studied the possibility of cooperation in a prisoner’s dilemma under the freedom
to choose the timing of moves. We argue that when the players have no freedom to
choose the timing of moves and a sequence of moves is exogenously given, cooperation
is also possible depending on the parameters of the game, but how social preferences
make the cooperation realized differs.

Similar to the PD games, we consider a SPD game defined as follows. There are
two roles: leader and follower. Before playing the game, the type of each player is
realized by f independently. Then, under incomplete information about their utility
functions, the players play the prisoner’s dilemma in Table 3 in the following sequence.
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At timing 1, the leader must choose either C or D. The follower has no move at timing
1 and observes the choice of the leader. Then, the follower chooses C or D at timing
2. This is the end of play. The players receive the payoffs in Table 3 corresponding to
the pair of their choices.

The leader has one information set at timing 1. He must choose C or D. The
follower has two information sets corresponding to the leader’s choice at timing 1
being either C or D. His (pure) strategy is a complete plan that assigns either C or
D to each of these information sets. Call a strategy CD when it prescribes C if the
leader chooses C and D if the leader chooses D. Call a strategy DD when it prescribes
D always. The Bayesian strategy is defined in the same manner as for the PD game.

The sequential equilibrium in a SPD game is characterized as follows. The sequen-
tial equilibrium strategy of the follower is to follow CD if his type (α, β) is β > β∗ and
DD if it is β < β∗. The follower’s strategy generates a distribution of follower’s behav-
iors. If the leader chooses C, then the follower chooses C with a probability φ(β > β∗)
and D with a probability 1−φ(β > β∗). Therefore, the expected utility for the leader
from choosing C is φ(β > β∗)a+ (1 − φ(β > β∗))[c− α(b− c)]. On the other hand, if
the leader chooses D, then the follower responds with D for sure. The expected utility
is d. Therefore, the leader chooses C if φ(β > β∗)a+(1−φ(β > β∗))[c−α(b− c)] > d.
The leader chooses D if the opposite inequality holds. The leader is indifferent between
C and D if and only if φ(β > β∗)a + (1 − φ(β > β∗))[c − α(b − c)] = d. Solve this
equation for α and we obtain

α∗∗ ≡ 1
(1 − φ(β > β∗))(b− c)

[
d̄(a) − d

]
where d̄(a) ≡ φ(β > β∗)a+ (1 − φ(β > β∗))c is a bound defined by (15) in Corollary
1. The leader chooses C if α < α∗∗ and D if α > α∗∗.

The SPD game differs from the PD game in how social preferences make the
leadership realized. Two differences are worth mentioning. First, whether a leader
chooses C or not is solely determined by his envy parameter α. In the SPD game,
the opponent of the leader is necessarily a follower. This means that the leader has
no opportunity to betray the opponent. Therefore, in terms of the incentive to lead,
which we explored in Section 7, the only tradeoff that the leader faces from choosing C
is between the benefit of inducing C from the follower and the risk of being betrayed
by the opponent. Hence, the leadership pattern is independent of the guilt parameter
β in the SPD game.

Second, the leadership is realized with a positive probability in a SPD game if
and only if α∗∗ > 0; that is, c < d < d̄(a). In the SPD game, the leader is the
only player who possibly chooses C at timing 1. This means that the necessary and
sufficient condition for the leadership to be realized with a positive probability is that
the leader of the pure materialist (α = β = 0) is willing to take the leadership when
the follower follows CD if his type (α, β) is β > β∗ and DD if it is β < β∗. This
condition corresponds to the condition for the PD game that the pure materialist has
an incentive to take a leadership behavior if no one else takes the leadership (so that
the opponent is a follower for sure), all the types with β > β∗ follow CDD, and all the
others follow DDD. Hence, the condition c < d < d̄(a) is the necessary and sufficient
condition for leadership in the SPD game, while it is only a sufficient condition in the
PD game.

These differences raise the issue of social dilemmas and social roles in dynamic
decision making in the presence of fairness concerns. The leader role and the follower
role are predetermined and assigned to agents by the rule in the SPD game. In
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contrast, agents are only provided an alternative of taking the role of leader or not
in the PD game. The leader role and the follower role are realized by the agents’
voluntary will if and only if one of the agents takes the leader role and the other agent
chooses to become a follower. The above differences in the way of leadership in the
SPD game and the PD game show that how social roles are distributed matters for
a possibility of resolving social dilemmas. In particular, one may tend to think that
it is more difficult to support leadership in equilibrium in the PD game, in which an
individual has the freedom not to take the responsibility of leadership, than in the
SPD game, in which the leader agent cannot escape the role of leader. Contrary to
this first thought, the second comparison suggests that an agent takes the leadership
behavior with a positive probability in a wider class of prisoner’s dilemmas in the PD
game than in the SPD game. Note, however, that when we consider a prisoner’s
dilemma that supports a leadership equilibrium both in the SPD game and the PD
game, it is not clear whether the probability of leadership is higher in the SPD game or
in the PD game, because the probability of leadership in the PD game is determined
endogenously in equilibrium. This raises an interesting issue for future research.

9.2.3 Simultaneous moves

We studied the possibility of cooperation in a prisoner’s dilemma by the leadership in
a model in which the players choose C or D over a span of time. We argue that when
the players have no freedom to choose the timing of moves and they are forced by the
rules of the game to move simultaneously, cooperation is also possible depending on
the parameters of the game.

Consider a simultaneous-move prisoner’s dilemma that is the same game as PD
except that there is a single timing for moves at which each player must choose C or
D simultaneously and independently. A (pure) Bayesian strategy s assigns to each
type (α, β) ∈ T a choice s(α, β) ∈ {C,D}. We describe the (symmetric pure) Bayesian
Nash equilibrium condition in terms of payoff parameters a, b, c, d and a type density
f .45

Let µC = φ(s(α,β) = C) denote the consistent belief that a player chooses C.
Then, a player of type (α, β) prefers C to D if and only if µCa+(1−µC){c−α(b−c)} >
µC{b− β(b− c)} + (1 − µC)d, or equivalently:

β >
1 − µC

µC
α+

1 − µC

µC

d− c

b− c
+
b− a

b− c
=: H̃(α|µC). (25)

From this, we can derive a fixed-point characterization of symmetric equilibria. The
belief µC supports an equilibrium if and only if:

µC = φ
(
β > H̃(α|µC)

)
. (26)

From the linear relation between α and β in (25), it is straightforward to verify
that the right-hand side of (26) equals zero for all µC ≤ b−c+d−c

a−c+b−c+d−c =: µ
C

and
monotonically reaches φ(β > β∗) as µC goes to 1, where β∗ = b−a

b−c was defined when
we introduced the best-response type sets. This implies that (1) µC = 0 always
supports an equilibrium in which all the players choose D irrespective of their types,
(2) if a positive µC supports an equilibrium, then µC > µ

C
, and (3) if there exists

a positive µC that supports an equilibrium, then there generically exists at least one

45See also Duffy and Muñoz-Garćıa (2011).
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other positive belief µ′C that supports another equilibrium. Figures 13 and 14 below
illustrate these results.

Figure 13 displays the best-response type set given by equation (25). The blue area
describes the set of types who optimally chooses C under the belief µC . Combined
with φ, a belief µC induces a probability that a player chooses C given µC ; that is,
φ
(
β > H̃(α|µC)

)
. Figure 14 shows two kinds of graph of φ

(
β > H̃(α|µC)

)
and hence

illustrates the fixed-point characterizations of (26). The left graph displays the case
in which no positive µC supports an equilibrium, while the right graph illustrates that
we have two positive beliefs as fixed points. Therefore, cooperation is possible in a
simultaneous-move prisoner’s dilemma depending on the parameters (a, b, c, d) and f .
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Furthermore, we can discuss how cooperation by the leadership differs from coop-

eration in simultaneous-move games. In a simultaneous-move prisoner’s dilemma, if
φ(β > β∗) ≤ µ

C
, we never have an equilibrium in which a player cooperates, which is
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illustrated by the left graph of Figure 14. On the other hand, Theorem 1 states that if
φ(β > β∗) > d−c

a−c , there exists a three-mode equilibrium in a (endogenous timing) PD
game. These results imply that if the game parameters satisfy d−c

a−c < φ(β > β∗) ≤ µ
C
,

then the cooperation outcome (C,C) is realized as an equilibrium outcome with a
positive probability in the (endogenous timing) PD game, whereas we never observe
cooperation in the simultaneous-move prisoner’s dilemma with the same parameters.46

This provides a case in which a prisoner’s dilemma with the chance of voluntary moves
is superior in achieving cooperation to a prisoner’s dilemma without the chance of
voluntary moves. This case may suggest that working face-to-face is different from
working in isolation in light of advancing cooperation among the players. We leave a
comprehensive understanding of this issue for future research.

Appendix A: The case of an exact bound for the existence
of the three-mode equilibrium

We can elaborate Theorem 2 and show that under certain conditions on f , the suffi-
ciency bound d̄(a) for the existence of a three-mode equilibrium in Corollary 1 is in
fact the exact bound. We say that a prior f of types admits the exact bound for the
existence of a three-mode equilibrium when for any pair (a, d) with c < d < a < b
there exists a three-mode equilibrium in PD((a, b, c, d), f) if and only if c < d < d̄(a).
When f admits the exact bound, the threshold d̂(a) for the existence of a three-mode
equilibrium stated in Theorem 2 is identical to the sufficiency bound of Corollary 1
itself; that is, d̂(a) = d̄(a) for any a ∈ (c, b).47

We characterize a prior f of types that admits the exact bound for the existence of
a three-mode equilibrium. Let φ(β < β∗|α∗ ≤ α) denote the conditional probability
of β < β∗ given an event of α∗ ≤ α. We set

φ(β < β∗|ᾱ ≤ α) = lim
α∗→ᾱ

φ(β < β∗|α∗ ≤ α)

for the case of α∗ = ᾱ. Then, we can show that a prior f admits the exact bound for
the existence of a three-mode equilibrium if it satisfies the following condition.

Theorem 13. Fix f . Suppose that

1 − β̃

1 − β̃ + α̃
<
φ(β < β̃|α̃ ≤ α)

φ(β < β̃)
(27)

holds for any β̃ ∈ (0, 1) and α̃ ∈ (0, ᾱ). Then, there exists a three-mode equilibrium in
PD((a, b, c, d), f) if and only if c < d < d̄(a).

Theorem 13 says that if the conditional probability of β < β̃ given an event of α̃ ≤ α
for α̃ ∈ (0, ᾱ) is high enough in comparison with the corresponding probability in
the extreme case of α̃ = 0, that is the prior probability φ(β < β̃), there is no three-
mode equilibrium in PD((a, b, c, d), f) with d ≥ d̄(a). The condition (27) provides a
particular bound 1−β̃

1−β̃+α̃
for a ratio of φ(β < β̃|α̃ ≤ α) against φ(β < β̃). An example

46To state it by treating the payoff parameters and type distribution separately, if d−c
a−c

< µ
C

, or

equivalently (b−c)(a−d) > (d−c)2, then there exists a type density f such that cooperation outcome
(C,C) is realized as an equilibrium outcome with a positive probability in the (endogenous timing)
PD game with those parameters and is never realized in the simultaneous-move prisoner’s dilemma.

47To be precise, when f admits the exact bound, there exists no three-mode equilibrium in
PD((a, b, c, d), f) for an interior case of d̂(a) < d < a but also for a boundary case of d = d̂(a).
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of a prior that admits the exact bound for the existence of a three-mode equilibrium
is the uniform distribution over T = {(α, β)|0 ≤ α, β ≤ 1 and β ≤ α}.

The bound in the condition (27) has the following simple meaning. Set β̃ = β∗ =
b−a
b−c for PD((a, b, c, d), f). Then, for each α̃ given, consider a “C if α < α̃” belief µ̃ such
that a type (α, β) with α < α̃ follows C, a type (α, β) with α ≥ α̃ and β ≥ β∗ follows
CDD, and a type (α, β) with α ≥ α̃ and β < β∗ follows DDD. Then, a threshold
type (α̃, β)’s preference for C over CDD is written as

U(α̃,β)(C, µ̃) − U(α̃,β)(CDD, µ̃)

=
(
φ(α̃ > α)a+ φ(α̃ ≤ α)[φ(β ≥ β∗|α̃ ≤ α)a+ φ(β < β∗|α̃ ≤ α)(c− α̃(b− c)]

)
−

(
φ(α̃ > α)a+ φ(α̃ ≤ α)[φ(β ≥ β∗|α̃ ≤ α)d+ φ(β < β∗|α̃ ≤ α)d]

)
= φ(α̃ ≤ α)

[(
a− φ(β < β∗|α̃ ≤ α)(1 − β∗ + α̃)(b− c)

)
− d

]
.

The bound in condition (27) means that this preference (the value in the brackets) is
maximized at the extreme case of α̃ = 0. In words, the pure materialist (α = β = 0)
is the type who is the most inclined to adopt strategy C over strategy CDD given a
“C if α < α̃” belief across all the candidate thresholds α̃ ∈ [0, ᾱ).

From this meaning of the condition (27), it is now straightforward to see why there
is no three-mode equilibrium in PD((a, b, c, d), f) with d ≥ d̄(a). Suppose that there
is a three-mode equilibrium distribution µ. As we noted after Theorem 1, the pure
materialist is not willing to follow C (or at most is indifferent between C and DDD
in the case of d = d̄(a)) given a “C if α < α̃” belief that corresponds to the extreme
case of α̃ = 0. Then, the condition (27) means that a threshold type (α̃, β) with
α̃ = α∗(µ) > 0 in the presumed equilibrium also strictly prefers CDD to C given a
“C if α < α̃” belief µ̃ that corresponds to α̃ = α∗(µ). Note that this belief µ̃ is a
belief that gives greater advantage to strategy C than the presumed distribution µ
because Lemma 2 indicates that when µ is a three-mode equilibrium distribution, a
player is subject to a risk of being betrayed not only by the opponent of type (α, β)
with α ≥ α∗(µ) and β ≤ β∗, but also by the opponent of some type (α, β) with
α < α∗(µ). Hence, the threshold type (α̃, β) with α̃ = α∗(µ) must strictly prefer CDD
to C given the presumed distribution µ. Hence, µ cannot be a three-mode equilibrium
distribution.

When a prior f admits the exact bound for the existence of a three-mode equilib-
rium, our results developed in this paper can be stated in a much sharper way. As for
the results on the existence of a three-mode equilibrium in Theorems 1 and 2, we can
use the explicit formula (15) in Corollary 1 to test whether there exists a three-mode
equilibrium in a prisoner’s dilemma PD((a, b, c, d), f).

The comparative statics results in Theorems 3 through 10 can be stated as the
comparative statics with respect to the three-mode equilibrium in general by refer-
ring to the case of c < d < d̄(a) without the necessity of referring to the case of
d̄(a) < d < d̂(a). Then, the comparative statics results with respect to the minimum
leadership equilibrium µmin are much simpler and parallel to the comparative statics
results with respect to the maximum leadership equilibrium µmax. Furthermore, the
characterization of the materialist leader pattern in Theorem 9 can be strengthened.
First, we can say that the leadership probability µC shrinks to 0 as d approaches the
bound d̄(a).

Lemma 10. Suppose that a prior f admits the exact bound for the existence of a
three-mode equilibrium. Then, for any given m > 0, there exists dm(a) with c ≤
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dm(a) < d̄(a) such that 0 < µC < m for any three-mode equilibrium distribution
µ = (µC , µCDD, µDDD) in any PD((a, b, c, d), f) with dm(a) < d < d̄(a).

Then, we can say that any three-mode equilibrium is a materialist leader pattern in
any prisoner’s dilemma PD((a, b, c, d), f) close enough to the bound d̄(a).

Theorem 14. Suppose that a prior f admits the exact bound for the existence of a
three-mode equilibrium. Then, there exists d̂ml(a) with c ≤ d̂ml(a) < d̄(a) such that
any three-mode equilibrium in any prisoner’s dilemma PD((a, b, c, d), f) with d̂ml(a) <
d < d̄(a) is of a materialist leader pattern while there exists a three-mode equilibrium of
either a hybrid leader pattern or a inequity concerned leader pattern in any prisoner’s
dilemma PD((a, b, c, d), f) with c < d < d̂ml(a). Furthermore, d̂ml(a) is increasing,
d̂ml(a) ≤ d̄ml(a), and lim

a→b
d̂ml(a) = b where d̄ml(a) is the bound stated in Theorem 9.

As we noted after Theorem 8, Theorems 7 and 8 suggest that if a prisoner’s dilemma
PD((a, b, c, d), f) supports a three-mode equilibrium with a materialist leader pattern,
then the leadership pattern turns from the materialist leader pattern to a hybrid pat-
tern (and then possibly to an inequity concerned leader pattern) as we move from the
prisoner’s dilemma PD((a, b, c, d), f) by lowering d and raising a. Figure 11 demon-
strates this leadership pattern transition for a particular prior f(α, β) = 6β. Theorem
14 means that when a prior f admits the exact bound for the existence of a three-mode
equilibrium, there exists in fact a nondegenerate area along the boundary d = d̄(a) in
which any three-mode equilibrium is a materialist leader pattern so that the leadership
pattern transition from a materialist leader pattern to a hybrid pattern (and then pos-
sibly to an inequity concerned leader pattern) occurs as we start from any prisoner’s
dilemma close enough to the boundary d = d̄(a) and move by lowering d and raising
a.

Appendix B: An example of no inequity concerned leader
pattern

Consider the uniform distribution over a type space T = {(α, β)|α ≥ β, 0 ≤ α, β ≤ 1}.
Then, for this prior, there exists no three-mode equilibrium with an inequity concerned
leader pattern in any prisoner’s dilemma. Suppose to the contrary that there exists
a three-mode equilibrium distribution µ with an inequity concerned leader pattern in
some prisoner’s dilemma. Let γ denote the slope of the boundary of the set T ∗

C(µ) for
an area of β < β∗ in the type space. Then, the three-mode equilibrium requires that
γ = µDDD

µC
, and the inequity concerned leader pattern requires that γ ≤ β∗

α∗(µ) . Now,
consider a triangle TC that connects (0, 0), (α∗(µ), β∗), and (α∗(µ), α∗(µ)) in the type
space T . Then, a probability that a type is realized in TC is (α∗(µ) − β∗)α∗(µ) under
the uniform distribution. This probability is no less than µC because the set T ∗

C(µ) is a
subset of TC in the inequity concerned leader pattern. Therefore, (α∗(µ)−β∗)α∗(µ) ≥
µC . Similarly, consider a trapezoid TDDD that connects (0, 0), (1, 0), (1, β∗), and
(α∗(µ), β∗). Then, a probability that a type is realized in TDDD is ((1−α∗(µ)) + 1)β∗

under the uniform distribution. This probability is no more than µDDD because TDDD

is a subset of the set T ∗
DDD(µ) in the inequity concerned leader pattern. Therefore,

((1 − α∗(µ)) + 1)β∗ ≤ µDDD. Hence, we must have

β∗

α∗(µ)
≥ γ =

µDDD

µC
≥ ((1 − α∗(µ)) + 1)β∗

(α∗(µ) − β∗)α∗(µ) .

This holds only when α∗(µ) = 1 and β∗ = 0. This is a contradiction.
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Appendix C: Proofs

Proof of Lemma 1
[ Step 1 ] Verify that ψ(µ) ∈ ∆ for every µ ∈ ∆ \ (1, 0, 0). This follows from Lemma
2 and Lemma 3. These lemmas show that T ∗

C(µ), T ∗
CDD(µ), T ∗

DDD(µ) cover T and
have degenerate intersections to each other so that ψC(µ) + ψCDD(µ) + ψDDD(µ) =
φ(T ∗

C(µ))+φ(T ∗
CDD(µ))+φ(T ∗

DDD(µ)) = φ(T ∗
C(µ)∪T ∗

CDD(µ)∪T ∗
DDD(µ)) = φ(T ) = 1.

[ Step 2 ] We confirm that ψ(µ) is continuous.48 First, the sets T ∗
C(µ), T ∗

CDD(µ),
and T ∗

CDD(µ) are continuous in µ in the Housdorff metric. Second, the sets T ∗
C(µ),

T ∗
CDD(µ), and T ∗

CDD(µ) are closed subsets in ∆ and the function φ is continuous in
Borel sets in ∆.
[ Step 3 ] We show Lemma 1-(1). Suppose that s : T → S is a three-mode equilib-
rium strategy. Then, µ = (φ(TC(s)), φ(TCDD(s)), φ(TDDD(s))) is a three-mode dis-
tribution. Furthermore, µ is a consistent belief at timing 1. Take (α, β) ∈ TC(s).
Then, it is necessary for the sequential rationality of this type at timing 1 that
U(α,β)(C, µ) ≥ U(α,β)(CDD,µ), U(α,β)(DDD,µ). This means that TC(s) ⊆ T ∗

C(µ).
Take (α, β) ∈ TCDD(s). Then, it is necessary for the sequential rationality of this
type at timing 1 that U(α,β)(CDD,µ) ≥ U(α,β)(C, µ), U(α,β)(DDD,µ). As is explained
in the text, β ≥ β∗ is also necessary for the sequential rationality of this type at
timing 2 after the opponent chooses C. This means that TCDD(s) ⊆ T ∗

CDD(µ). Sim-
ilarly, TDDD(s) ⊆ T ∗

DDD(µ). Then, φ(TC(s)) = φ(T ∗
C(µ)), φ(TCDD(s)) = φ(T ∗

C(µ)),
and φ(TDDD(s)) = φ(T ∗

DDD(µ)) must hold because T ∗
C(µ), T ∗

CDD(µ), T ∗
DDD(µ) have

degenerate intersections to each other. This means µ = ψ(µ).
[ Step 4 ] We show Lemma 1-(2). Suppose a three-mode distribution µ ∈ ∆ such
that µ = ψ(µ). Take any three-mode strategy s : T → S that satisfies TC(s) ⊆
T ∗

C(µ), TCDD(s) ⊆ T ∗
CDD(µ), and TDDD(s) ⊆ T ∗

DDD(µ). Then, φ(TC(s)) = φ(T ∗
C(µ)),

φ(TCDD(s)) = φ(T ∗
C(µ)), and φ(TDDD(s)) = φ(T ∗

DDD(µ)) because T ∗
C(µ), T ∗

CDD(µ),
T ∗

DDD(µ) have degenerate intersections to each other. This means that µ is a belief at
timing 1 that is consistent with s because µ = ψ(µ).

Now, we verify that s satisfies sequential rationality under µ. Consider the informa-
tion set at timing 2 after the opponent chooses C. It is sequentially rational for a type
(α, β) ∈ TCDD(s) to choose C because TCDD(s) ⊆ T ∗

CDD(µ), and as is explained in
the text, it is sequentially rational for a type (α, β) ∈ T ∗

CDD(µ) to choose C. Similarly,
it is sequentially rational for a type (α, β) ∈ TDDD(s) to choose D.49

Consider the information set at timing 2 after the opponent chooses D. Then, it is
sequentially rational for both a type (α, β) ∈ TCDD(s) and a type (α, β) ∈ TDDD(s)
to choose D because the best response to D is D irrespective of a player’s inequity
aversion.

Consider the information set at timing 2 after the opponent chooses ∅. Then, the
consistent belief is that the opponent is either a type (α, β) ∈ TCDD(s) or a type
(α, β) ∈ TDDD(s). Both types choose a∅ = D at timing 2 after the player in question
also chooses ∅ at timing 1. Hence, it is sequentially rational for the player to choose D
against the expected choice of D irrespective of whether he is a type (α, β) ∈ TCDD(s)
or a type (α, β) ∈ TDDD(s).

Finally, consider the information set at timing 1. First, note that the optimality of

48Note that ψ(µ) also depends on (a, d). The function ψ ia also continuous in (a, d) by the same
argument.

49C-mode is left unspecified in timing 2 actions aC , aD, a∅. To be explicit, a type (α, β) ∈ TC(s)
follows (C,C,D,D) if β > β∗ and (C,D,D,D) if β < β∗. Then, it is sequentially rational for a type
(α, β) ∈ TC(s) to take these actions.
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a strategy among those with a1 = ∅ is equivalent to the sequential rationality at timing
2. As is established above, either CDD or DDD is optimal against the three-mode
strategy s : T → S. Second, the strategies with a1 6= ∅ are C and D = (D, aC , aD, a∅).
Observe that DDD and D generate the same outcomes given the three-mode strategy
s : T → S. If the opponent follows C-mode, then both the outcome from following
DDD and the outcome from following D are (D,C). If the opponent follows either
CDD-mode or DDD-mode, then both the outcome from following DDD and the
outcome from following D are (D,D). Therefore, DDD is as good as D given the
three-mode strategy s : T → S. Hence, if a strategy is optimal among C, CDD, and
DDD, then it is optimal in S. This means that it is sequentially rational for a type
(α, β) ∈ TC(s) to choose C at timing 1 because TC(s) ⊆ T ∗

C(µ), and it is sequentially
rational for a type (α, β) ∈ TCDD(s) and a type (α, β) ∈ TDDD(s) to choose ∅ because
TCDD(s) ⊆ T ∗

CDD(µ) and TDDD(s) ⊆ T ∗
DDD(µ). (Q.E.D.)

Proof of Lemma 4
[ Step 1 ] Consider ψ(µ) for µ = (µC , 1 − µC , 0) with µC ∈ [0, 1). Then, there exists
µ̄C ∈ (a−d

b−d , 1) such that ψC(µC , 1 − µC , 0) > µC for µC ∈ [0, µ̄C), ψC(µ̄C , 1 − µ̄C , 0) =
µ̄C , and ψC(µC , 1 − µC , 0) < µC for µC ∈ (µ̄C , 1).
(Proof)

Consider µ = (µC , 1 − µC , 0) with µC ∈ [0, 1). Then, T ∗
CDD(µ) = ∅ because

U(α,β)(C, µ) − U(α,β)(CDD,µ) = (1 − µC)(a− d) > 0

for any (α, β) ∈ T . Therefore, (α, β) ∈ T ∗
C(µ) if and only if

U(α,β)(C, µ) − U(α,β)(DDD,µ) = µC{a− [b− β(b− c)]} + (1 − µC)(a− d) ≥ 0.

Hence, we have

ψC(µ) = φ
(
µC(b− c)β ≥ µC(b− d) − (a− d)

)
.

This means that ψC(µ) = 1 for µC ∈ [0, a−d
b−d ] and ψC(µ) is strictly decreasing in µC

over µC ∈ (a−d
b−d , 1). Furthermore, ψ : ∆ \ (1, 0, 0) → ∆ is continuous in µ by Lemma

1. Hence, we have the desired µ̄C . ||
[ Step 2 ] Consider ψ(µ) for µ = (µC , µCDD, µDDD) with µC ∈ [0, 1) and µCDD =
d−c
a−dµDDD. Then, the threshold α∗(µ) defined by (4) is α∗(µ) = 0. Hence, it follows
from Lemma 2 and Lemma 3 that ψ(µ) = (0, φ(β > β∗), φ(β < β∗)).
[ Step 3 ] Fix µC ∈ [0, 1) and consider ψ(µ′), ψ(µ′′) for µ′ = (µ′C , µ

′
CDD, µ

′
DDD), µ′′ =

(µ′′C , µ
′′
CDD, µ

′′
DDD) with µ′C = µ′′C = µC , µ′CDD ≥ d−c

a−dµ
′
DDD, and µ′′CDD ≥ d−c

a−dµ
′′
DDD.

Then, if µ′CDD > µ′′CDD (and so µ′DDD < µ′′DDD), then

(1) ψC(µ′) ≥ ψC(µ′′), and

(2) it is never the case that 0 < ψC(µ′) = ψC(µ′′) < 1.

(Proof)
Consider µ′ = (µ′C , µ

′
CDD, µ

′
DDD), µ′′ = (µ′′C , µ

′′
CDD, µ

′′
DDD) with µ′C = µ′′C = µC ∈

(0, 1) and µ′CDD > µ′′CDD (and so µ′DDD < µ′′DDD). We show that T ∗
C(µ′) ⊇ T ∗

C(µ′′).
Take (α, β) ∈ T ∗

C(µ′′). Then, U(α,β)(C, µ′′) ≥ U(α,β)(CDD,µ′′) and U(α,β)(C, µ′′) ≥
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U(α,β)(DDD,µ′′). Then, together with µ′CDD > µ′′CDD and µ′DDD < µ′′DDD, we have

U(α,β)(C, µ
′) − U(α,β)(CDD,µ

′) = µC(a− a) + µ′CDD(a− d) + µ′DDD{[c− α(b− c)] − d}
> µC(a− a) + µ′′CDD(a− d) + µ′′DDD{[c− α(b− c)] − d}
= U(α,β)(C, µ

′′) − U(α,β)(CDD,µ
′′)

≥ 0
U(α,β)(C, µ

′) − U(α,β)(DDD,µ
′) = µC{a− [b− β(b− c)]} + µ′CDD(a− d) + µ′DDD{[c− α(b− c)] − d}
> µC{a− [b− β(b− c)]} + µ′′CDD(a− d) + µ′′DDD{[c− α(b− c)] − d}
= U(α,β)(C, µ

′′) − U(α,β)(DDD,µ
′′)

≥ 0.

Therefore, (α, β) ∈ T ∗
C(µ′). Hence, T ∗

C(µ′) ⊇ T ∗
C(µ′′). This establishes ψC(µ′) ≥

ψC(µ′′).
Suppose that 0 < ψC(µ′′) < 1. Then, it is easily verified from Lemmas 2 and 3 that

there exists (α, β) ∈ T ∗
C(µ′′)∩T ∗

DDD(µ′′) such that any open neighborhood N of (α, β)
contains an open set in (N ∩T ∗

DDD(µ′′))\T ∗
C(µ′′). On the other hand, the argument in

the proof of (1) immediately guarantees the existence of an open neighborhood N ′ of
the (α, β) such that C is the best among C,CDD,DDD under µ′ for every (α̃, β̃) ∈ N ′;
that is, N ′ ⊆ T ∗

C(µ′). N ′ contains an open set in (N ′∩T ∗
DDD(µ′′))\T ∗

C(µ′′). This open
set is contained in T ∗

C(µ′) \ T ∗
C(µ′′), and hence ψC(µ′) > ψC(µ′′). ||

[ Step 4 ] For each µC ∈ [0, µ̄C ], there uniquely exists µ̂ ∈ ∆ with µ̂CDD ≥ d−c
a−d µ̂DDD

such that ψC(µ̂) = µ̂C = µC . Denote it as µ̂(µC). Then,

(1) µ̂(0) = (0, µ̂CDD(0), µ̂DDD(0)) with µ̂CDD(0) = d−c
a−d µ̂DDD(0) and ψ(µ̂(0)) =

(0, φ(β > β∗), φ(β < β∗))

(2) µ̂(µ̄C) = (µ̄C , 1 − µ̄C , 0) and ψ(µ̂(µ̄C)) = (µ̄C , 0, 1 − µ̄C)

(3) µ̂CDD(µC) > d−c
a−d µ̂DDD(µC), µ̂DDD(µC) > 0 for µC ∈ (0, µ̄C)

(Proof)
Consider µC = 0. Consider µ = (0, µCDD, µDDD) with µCDD = d−c

a−dµDDD. This
µ satisfies the required property for µ̂ that ψC(µ̂) = µ̂C = µC = 0 because ψ(µ) =
(0, φ(β > β∗), φ(β < β∗)) holds by Step 2. Consider any µ = (0, µCDD, µDDD) with
µCDD > d−c

a−dµDDD. Then,

U(0,0)(C, µ)−U(0,0)(CDD,µ) = U(0,0)(C, µ)−U(0,0)(DDD,µ) = µCDD(a−d)+µDDD(c−d) > 0.

Hence, T ∗
C(µ) contains some neighborhood of (0, 0). Therefore, ψC(µ) > 0. This µ

fails to satisfy the required property for µ̂ that ψC(µ̂) = µ̂C = µC = 0. Thus, (1) is
established.

Consider µC = µ̄C . Consider µ = (µ̄C , 1 − µ̄C , 0). This µ satisfies the required
property for µ̂ that ψC(µ̂) = µ̂C = µC = µ̄C because ψ(µ) = (µ̄C , 0, 1 − µ̄C) holds
by Step 1. Consider any other µ′′ = (µ̄C , µ

′′
CDD, µ

′′
DDD) with µ′′CDD ≥ d−c

a−dµ
′′
DDD.

Then, µDDD = 0 < µ′′DDD. Therefore, by Step 3, it is never the case that 0 <
ψC(µ) = ψC(µ′′) = µ̄C < 1. This µ′′ fails to satisfy the required property for µ̂ that
ψC(µ̂) = µ̂C = µC = µ̄C . Thus, (2) is established.

To show (3), consider µC ∈ (0, µ̄C). Note that (1 − µC − µDDD) ≥ d−c
a−dµDDD if

and only if µDDD ≤ a−d
a−c (1 − µC). For each µDDD ∈ [0, a−d

a−c (1 − µC)], let κ(µDDD) =
ψC((µC , 1 − µC − µDDD, µDDD)) − µC . Then, κ(0) = ψC((µC , 1 − µC , 0)) − µC > 0
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follows from (1) and κ(a−d
a−c (1 − µC)) = −µC < 0 follows from (2). The continuity of

ψ guarantees that there exists µ̂ ∈ ∆ with 0 < µ̂DDD and µ̂CDD > d−c
a−d µ̂DDD such

that κ(µ̂DDD) = 0. Then, µ̂ = (µC , 1 − µC − µ̂DDD, µ̂DDD) satisfies the required
property for µ̂ that ψC(µ̂) = µ̂C = µC . Consider any other µ′′ = (µC , µ

′′
CDD, µ

′′
DDD)

with µ′′CDD ≥ d−c
a−dµ

′′
DDD. Then, either µ̂CDD > µ′′CDD or µ̂CDD < µ′′CDD. In either

case, by Step 3, it is never the case that 0 < ψC(µ̂) = ψC(µ′′) = µC < 1. This µ′′ fails
to satisfy the required property for µ̂ that ψC(µ̂) = µ̂C = µC . Thus, (3) is established.
||
[ Step 5 ] Note that µ̄C established in Step1 depends on (a, d). Taking this fact into
account, let us denote µ̄C(a, d) explicitly. Then, µ̄C(a, d) is continuous.
(Proof)

Suppose that µ̄C(a, d) is not continuous at some (a, d). Then, there exists a se-
quence {(an, dn)}∞n=1 such that lim

n→∞
(an, dn) = (a, d) and {µ̄C(an, dn)}∞n=1 does not

converge to µ̄C(a, d). Then, we can take a convergent subsequence {µ̄C(anm , dnm)}∞m=1

such that there exists µ̄∗C = lim
m→∞

µ̄C(anm , dnm) and µ̄∗C 6= µ̄C(a, d) because {µ̄C(an, dn)}∞n=1

is a bounded sequence. By Step 1, µ̄C(a, d) is a unique solution µ̄C to

µ̄C − φ
(
µ̄C(b− c)β ≥ µ̄C(b− d) − (a− d)

)
= 0. (28)

Therefore, µ̄∗C 6= µ̄C(a, d) means that

µ̄∗C − φ
(
µ̄∗C(b− c)β ≥ µ̄∗C(b− d) − (a− d)

)
6= 0.

Then, there exists ε > 0 such that∣∣∣µ̄C−φ
(
µ̄C(b−c)β ≥ µ̄C(b−d̃)−(a−d̃)

)∣∣∣ > 1
2

∣∣∣µ̄∗C−φ(
µ̄∗C(b−c)β ≥ µ̄∗C(b−d)−(a−d)

)∣∣∣ > 0.

for any (µ̄C , ã, d̃) ∈ (µ̄∗C − ε, µ̄∗C + ε) × (a − ε, a + ε) × (d − ε, d + ε) because the
left hand side of (28) is continuous in (µC , a, d). Then, there exists m such that
(µ̄C(anm , dnm), anm , dnm) ∈ (µ̄∗C − ε, µ̄∗C + ε) × (a − ε, a + ε) × (d − ε, d + ε) because
lim

m→∞
µ̄C(anm , dnm) = µ̄∗C and lim

m→∞
(anm , dnm) = (a, d). Then,∣∣∣µ̄C(anm , dnm)−φ

(
µ̄C(anm , dnm)(b−c)β ≥ µ̄C(anm , dnm)(b−dnm)−(anm−dnm)

)∣∣∣ > 0.

This is a contradiction because µ̄C(anm , dnm) is a unique solution µ̄C to

µ̄C − φ
(
µ̄C(b− c)β ≥ µ̄C(b− dnm) − (anm − dnm)

)
= 0. ||

[ Step 6 ] Note that µ̂(µC) depends on (a, d). Taking this fact into account, let us
denote µ̂(µC , a, d) explicitly. Then, µ̂(µC , a, d) is continuous.
(Proof)

Consider a sequence {(µn
C , a

n, dn)}∞n=1 in [0, 1] × [c, b] × [c, b] such that 0 ≤ µn
C ≤

µ̄C(an, dn), c < an < b, and c < dn < an for each n. Suppose that the sequence
converges. Let (µ∗C , a

∗, d∗) = lim
n→∞

(µn
C , a

n, dn). Then, it follows from Step 5 that

0 ≤ µ∗C = lim
n→∞

µn
C ≤ lim

n→∞
µ̄C(an, dn) = µ̄C( lim

n→∞
an, lim

n→∞
dn) = µ̄C(a∗, d∗).

Then, there exists the µ̂(µ∗C , a
∗, d∗) established in Step 4.
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Examine the corresponding sequence {µ̂(µn
C , a

n, dn)}∞n=1 generated by µ̂. Sup-
pose a convergent subsequence {µ̂(µnm

C , anm , dnm)}∞m=1 of it arbitrarily. Let µ̂∗ =
lim

m→∞
µ̂(µnm

C , anm , dnm). Then,

µ̂∗C = lim
m→∞

µ̂C(µnm
C , anm , dnm) = lim

m→∞
µnm

C = µ∗C

where the second equality holds because µ̂C(µnm
C , anm , dnm) = µnm

C holds for each nm

by the definition of µ̂(µC , a, d). Additionally,

ψC(µ̂∗, a∗, d∗) = lim
m→∞

ψC(µ̂(µnm
C , anm , dnm), anm , dnm)

= lim
m→∞

µ̂C(µnm
C , anm , dnm)

= lim
n→∞

µnm
C

= µ∗C

where the first equality holds because ψ(µ, a, d) is continuous by the proof of Lemma
1, and the second and third equalities hold because ψC(µ̂(µnm

C , anm , dnm), anm , dnm) =
µ̂C(µnm

C , anm , dnm) = µnm
C holds for each nm by the definition of µ̂(µC , a, d). Thus,

ψC(µ̂∗, a∗, d∗) = µ̂∗C = µ∗C .

Then, µ̂(µ∗C , a
∗, d∗) = µ̂∗ because µ̂(µ∗C , a

∗, d∗) is the unique µ̂ that satisfies ψC(µ̂) =
µ̂C = µ∗C . Thus, we know that any convergent subsequence of {µ̂(µn

C , a
n, dn)}∞n=1

converges to µ̂(µ∗C , a
∗, d∗). Then, the sequence {µ̂(µn

C , a
n, dn)}∞n=1 itself converges to

µ̂(µ∗C , a
∗, d∗) because it is a sequence in a compact set ∆. This means that µ̂(µC , a, d)

is continuous. (Q.E.D.)

Proof of Lemma 5
Suppose that a belief µ is a three-mode equilibrium distribution. Then, µ = ψ(µ)

and µC > 0 by Lemma 1. By the way of construction of µ̂(µC) and λ(µC), it holds for
µ with µ = ψ(µ) that λ(µC) = 0 and µ = µ̂(µC).

Conversely, suppose that µ satisfies conditions (1) through (3) in Lemma 5. Then,
µ = µ̂(µC) means that µC = ψC(µ). Together with µ = µ̂(µC), λ(µC) = 0 means that
µDDD = ψDDD(µ). Therefore, µ = ψ(µ). Finally, by Lemma 4-(2),

λ(µ̄C) = ψDDD(µ̂(µ̄C)) − µ̂DDD(µ̄C) = (1 − µ̄C) − 0 > 0.

This implies that µC 6= µ̄C . Then, by Lemma 4-(3), µC ∈ (0, µ̄C) implies that µCDD >
0 and µDDD > 0. Thus, this µ is a three-mode equilibrium. (Q.E.D.)

Proof of Theorem 1
Suppose that condition (14) holds. By Lemma 4, µ̂(0) = (0, d−c

a−c ,
a−d
a−c ) and ψ(µ̂(0)) =

(0, φ(β > β∗), φ(β < β∗)). Then, condition (14) guarantees

λ(0) = ψDDD(µ̂(0)) − µ̂DDD(0) = φ(β < β∗) − a− d

a− c
< 0.

On the other hand, by Lemma 4, µ̄C < 1 and µ̂(µ̄C) = (µ̄C , 1 − µ̄C , 0) and
ψ(µ̂(µ̄C)) = (µ̄C , 0, 1 − µ̄C). Then,

λ(µ̄C) = ψDDD(µ̂(µ̄C)) − µ̂DDD(µ̄C) = (1 − µ̄C) − 0 > 0.

Finally, λ(µC) is continuous because ψ(µ) is continuous by Lemma 1 and µ̂(µC) is
continuous by Lemma 4.
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These establish that there exists µC ∈ (0, µ̄C) such that λ(µC) = 0. Set µ = µ̂(µC).
Then, this µ satisfies conditions (1), (2), and (3) in Lemma 5. Hence, this µ is a three-
mode equilibrium distribution. (Q.E.D.)

Proof of Corollary 1
Corollary 1-(2) is straightforward from Theorem 1 and the definition of d̄(a). To

see 1-(1), recall that β∗ = b−a
b−c . Then, c < d̄(a) < a is immediate by the definition

of d̄(a), because 0 < β∗ < 1 so that 0 < φ(β > β∗) < 1. It holds that d
da d̄(a) =

φ(β > β∗) + (a − c)( d
dβ∗φ(β > β∗))dβ∗

da > 0, because d
dβ∗φ(β > β∗) < 0 and dβ∗

da < 0.
From c < d̄(a) < a, it immediately follows that lim

a→c
d̄(a) = c. Finally, it holds that

lim
a→b

d̄(a) = b because lim
a→b

β∗ = 0 so that lim
a→b

φ(β > β∗) = 1. (Q.E.D.)

Proof of Lemma 6
To show Lemma 6-(1), recall from the proof of Lemma 4 that µ̄C(a, d) is a unique
solution µ̄C to

µ̄C − φ
(
µ̄C(b− c)β ≥ µ̄C(b− d) − (a− d)

)
= 0.

Note that φ
(
µC(b − c)β ≥ µC(b − d) − (a − d)

)
is 1 for µC ∈ [0, a−d

b−d ] and strictly

decreasing in µC over µC ∈ (a−d
b−d , 1) so that the solution µ̄C lies in the latter region

(a−d
b−d , 1). Then, the solution µ̄C is strictly increasing in a and strictly decreasing in d

because

∂

∂a
φ
(
µ̄C(b− c)β ≥ µ̄C(b− d) − (a− d)

)
> 0

∂

∂d
φ
(
µ̄C(b− c)β ≥ µ̄C(b− d) − (a− d)

)
< 0.

To show Lemma 6-(2), fix d ∈ (c, b) arbitrarily and compare arbitrary a′, a′′ with
c < d < a′ < a′′ < b. By Lemma 6-(1) established above, µ̄C(a′, d) < µ̄C(a′′, d) so that
both λ(µC , a

′, d) and λ(µC , a
′′, d) are defined over [0, µ̄C(a′, d)]. We will show in two

steps below that for each µC ∈ [0, µ̄C(a′, d)]

1. µ̂DDD(µC , a
′, d) < µ̂DDD(µC , a

′′, d), and

2. ψDDD(µ̂(µC , a
′, d), a′, d) ≥ ψDDD(µ̂(µC , a

′′, d), a′′, d).

Then, it is established for any µC ∈ [0, µ̄C(a′, d)] that

λ(µC , a
′, d) = ψDDD(µ̂(µC , a

′, d), a′, d) − µ̂DDD(µC , a
′, d)

> ψDDD(µ̂(µC , a
′′, d), a′′, d) − µ̂DDD(µC , a

′′, d)
= λ(µC , a

′′, d).

It is proved in a similar way that λ(µC , a, d) is strictly increasing in d. (The proof is
simpler because β∗ is independent of d.)
[ Step 1 ] µ̂DDD(µC , a

′, d) < µ̂DDD(µC , a
′′, d) for each µC ∈ [0, µ̄C(a′, d)].

(Proof)
Consider µC = 0. Then, by Lemma 4, µ̂(0, a′, d) = (0, d−c

a′−c ,
a′−d
a′−c ) and µ̂(0, a′′, d) =

(0, d−c
a′′−c ,

a′′−d
a′′−c ). Therefore, µ̂DDD(µC , a

′, d) = a′−d
a′−c < a′′−d

a′′−c = µ̂DDD(µC , a
′′, d) when

a′ < a′′.
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Consider µC ∈ (0, µ̄C(a′, d)]. Suppose to the contrary that µ̂DDD(µC , a
′, d) ≥

µ̂DDD(µC , a
′′, d). Then, on one hand, we have

ψC(µ̂(µC , a
′′, d), a′, d) ≥ ψC(µ̂(µC , a

′, d), a′, d) = µC

= ψC(µ̂(µC , a
′′, d), a′′, d)

= µ̂C(µC , a
′′, d)

where the first inequality follows from µ̂DDD(µC , a
′, d) ≥ µ̂DDD(µC , a

′′, d) by Step 3
of the proof of Lemma 4.

On the other hand, by a′ < a′′, we have

ψC(µ̂(µC , a
′′, d), a′′, d) > ψC(µ̂(µC , a

′′, d), a′, d)

for the following reason. Take (α, β) ∈ T ∗
C(µ̂(µC , a

′′, d), a′, d). Then,

U(α,β)(C, µ̂(µC , a
′′, d), a′, d) ≥ U(α,β)(CDD, µ̂(µC , a

′′, d), a′, d)

U(α,β)(C, µ̂(µC , a
′′, d), a′, d) ≥ U(α,β)(DDD, µ̂(µC , a

′′, d), a′, d).

Then, together with a′ < a′′, we have

U(α,β)(C, µ̂(µC , a
′′, d), a′′, d) − U(α,β)(CDD, µ̂(µC , a

′′, d), a′′, d)

= U(α,β)(C, µ̂(µC , a
′′, d), a′, d) − U(α,β)(CDD, µ̂(µC , a

′′, d), a′, d)

+ µ̂CDD(µC , a
′′, d)(a′′ − a′)

≥ U(α,β)(C, µ̂(µC , a
′′, d), a′, d) − U(α,β)(CDD, µ̂(µC , a

′′, d), a′, d)

≥ 0

and

U(α,β)(C, µ̂(µC , a
′′, d), a′′, d) − U(α,β)(DDD, µ̂(µC , a

′′, d), a′′, d)

= U(α,β)(C, µ̂(µC , a
′′, d), a′, d) − U(α,β)(DDD, µ̂(µC , a, d), a′, d)

+ µ̂C(µC , a
′′, d)(a′′ − a′) + µ̂CDD(µC , a

′′, d)(a′′ − a′)
≥ U(α,β)(C, µ̂(µC , a

′′, d), a′, d) − U(α,β)(DDD, µ̂(µC , a
′′, d), a′, d)

≥ 0.

Therefore, (α, β) ∈ T ∗
C(µ̂(µC , a

′′, d), a′′, d). Hence, T ∗
C(µ̂(µC , a

′′, d), a′, d) ⊆ T ∗
C(µ̂(µC , a

′′, d), a′′, d).
Furthermore, T ∗

C(µ̂(µC , a
′′, d), a′, d) $ T ∗

C(µ̂(µC , a
′′, d), a′′, d) by a similar argument to

Step 3 of the proof of Lemma 4. Hence, ψC(µ̂(µC , a
′′, d), a′′, d) > ψC(µ̂(µC , a

′′, d), a′, d).
By combining the above inequalities, we have

ψC(µ̂(µC , a
′′, d), a′′, d) > ψC(µ̂(µC , a

′′, d), a′, d) ≥ µ̂C(µC , a
′′, d).

This contradicts the supposition that ψC(µ̂(µC , a
′′, d), a′′, d) = µ̂C(µC , a

′′, d). Hence,
it must be the case that µ̂DDD(µC , a

′, d) < µ̂DDD(µC , a
′′, d).

[ Step 2 ] ψDDD(µ̂(µC , a
′, d), a′, d) ≥ ψDDD(µ̂(µC , a

′′, d), a′′, d) for each µC ∈ [0, µ̄C(a′, d)].
(Proof)

First, we show that α∗(µ̂(µC , a
′, d), a′, d) > α∗(µ̂(µC , a

′′, d), a′′, d). Suppose to the
contrary that α∗(µ̂(µC , a

′, d), a′, d) ≤ α∗(µ̂(µC , a
′′, d), a′′, d). Recall from (6) that

H(α|µ̂(µC , a
′, d), a′, d) =

µ̂DDD(µC , a
′, d)

µ̂C(µC , a′, d)
(α− α∗(µ̂(µC , a

′, d), a′, d)) + β∗(a′)

H(α|µ̂(µC , a
′′, d), a′′, d) =

µ̂DDD(µC , a
′′, d)

µ̂C(µC , a′′, d)
(α− α∗(µ̂(µC , a

′′, d), a′′, d)) + β∗(a′′)
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where we denote β∗(a′) = b−a′

b−c and β∗(a′′) = b−a′′

b−c to express the fact that β∗ depends

on a. Note that the slopes µ̂DDD(µC ,a′,d)
µ̂C(µC ,a′,d) and µ̂DDD(µC ,a′′,d)

µ̂C(µC ,a′′,d) are related as µ̂DDD(µC ,a′,d)
µ̂C(µC ,a′,d) <

µ̂DDD(µC ,a′′,d)
µ̂C(µC ,a′′,d) because µ̂C(µC , a

′, d) = µC = µ̂C(µC , a
′′, d) and µ̂DDD(µC , a

′, d) <

µ̂DDD(µC , a
′′, d) by Step 1. Note also that β∗(a′) = b−a′

b−c > b−a′′

b−c = β∗(a′′) when a′ <
a′′. Then, under the supposition that α∗(µ̂(µC , a

′, d), a′, d) ≤ α∗(µ̂(µC , a
′′, d), a′′, d),

we have

T ∗
C(µ̂(µC , a

′, d), a′, d) = T ∩ {(α, β)|α ≤ α∗(µ̂(µC , a
′, d), a′, d), β ≥ H(α|µ̂(µC , a

′, d), a′, d)}
$ T ∩ {(α, β)|α ≤ α∗(µ̂(µC , a

′′, d), a′′, d), β ≥ H(α|µ̂(µC , a
′′, d), a′′, d)}

= T ∗
C(µ̂(µC , a

′′, d), a′′, d).

This means that µ̂C(µC , a
′, d) = φ(T ∗

C(µ̂(µC , a
′, d), a′, d) < φ(T ∗

C(µ̂(µC , a
′′, d), a′′, d) =

µ̂C(µC , a
′′, d). This contradicts µ̂C(µC , a

′, d) = µC = µ̂C(µC , a
′′, d).

Then, together with β∗(a′) = b−a′

b−c > b−a′′

b−c = β∗(a′′), the relation α∗(µ̂(µC , a
′, d), a′, d) >

α∗(µ̂(µC , a
′′, d), a′′, d) thus established implies that

ψCDD(µ̂(µC , a
′, d), a′, d) = φ(T ∗

CDD(µ̂(µC , a
′, d), a′, d))

= φ(T ∩ {(α, β)|α > α∗(µ̂(µC , a
′, d), a′, d), β > β∗(a′)})

≤ φ(T ∩ {(α, β)|α > α∗(µ̂(µC , a
′′, d), a′′, d), β > β∗(a′′)})

= φ(T ∗
CDD(µ̂(µC , a

′′, d), a′′, d))
= ψCDD(µ̂(µC , a

′′, d), a′′, d).

Hence, together with ψC(µ̂(µC , a
′, d), a′, d) = µC = ψC(µ̂C(µC , a

′′, d), a′′, d), we con-
clude that

ψDDD(µ̂(µC , a
′, d), a′, d) = 1 − ψC(µ̂(µC , a

′, d), a′, d) − ψCDD(µ̂(µC , a
′, d), a′, d)

≥ 1 − ψC(µ̂(µC , a
′′, d), a′′, d) − ψCDD(µ̂(µC , a

′′, d), a′′, d)
= ψDDD(µ̂(µC , a

′′, d), a′′, d).

(Q.E.D.)

Proof of Theorem 2
[ Step 1 ] Fix a ∈ (c, b). We will show how to find d̂(a) with the desired properties.

First, recall from Lemma 6-(1) that µ̄C(a, d) is strictly decreasing in d ∈ (c, a).
This allows us to define ¯̄µC(a) = limd↓c µ̄C(a, d) because µ̄C(a, d) is a probability and
bounded from above by 1.

For each µC ∈ [0, ¯̄µC(a)), there exists d′ ∈ (c, a) such that µC ∈ [0, µ̄C(a, d′)] so
that λ(µC , a, d

′) is defined. Then, λ(µC , a, d) is defined for every d ∈ (c, d′) because
d < d′ means µ̄C(a, d) > µ̄C(a, d′). Over the interval (c, d′), λ(µC , a, d) is increasing
in d by Lemma 6-(2). This allows us to define λ(µC , a) = limd↓c λ(µC , a, d) because
λ(µC , a, d) is a difference in two probabilities and bounded from below by −1.

Define MC(a) = {µC ∈ [0, ¯̄µC(a))|λ(µC , a) < 0}. Note from the proof of Theorem
1 that λ(0, a, d) < 0 for any d ∈ (c, d̄(a)). This implies that λ(0, a) < 0. Therefore,
0 ∈MC(a). Thus, MC(a) is nonempty.

Consider µC ∈MC(a)\0. Then, by the way of construction of λ(µC , a), λ(µC , a) <
0 guarantees that there exists some d′ ∈ (c, a) such that λ(µC , a, d

′) < 0. On the other
hand, we can show the following fact, for which we postpone the proof to Step 3 below.

Claim 1: For µC ∈MC(a) \ 0, there exists some d′′ ∈ (c, a) such that µC ≤ µ̄C(a, d′′)
and λ(µC , a, d

′′) > 0.
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For d′ and d′′ thus selected for the given µC ∈MC(a) \ 0, it immediately follows from
λ(µC , a, d

′) < 0 and λ(µC , a, d
′′) > 0 that d′ < d′′ because λ(µC , a, d) is increasing in

d by Lemma 6-(2). Then, there exists a unique d∗ ∈ (d′, d′′) in the interval (c, a) such
that λ(µC , a, d

∗) = 0 because λ(µC , a, d) is continuous and strictly increasing in d. We
write d∗(µC , a) to express the fact that this d∗ depends on (µC , a).

For µC = 0 ∈ MC(a), note from the proof of Theorem 1 that λ(0, a, d̄(a)) = 0. So
we set d∗(0, a) = d̄(a).

Now define d̂(a) ≡ supµC∈MC(a) d
∗(µC , a). We can show the following fact, for

which we postpone the proof to Step 3 below.

Claim 2: There exists µ̂C ∈MC(a) that achieves supµC∈MC(a) d
∗(µC , a) so that d̂(a) =

maxµC∈MC(a) d
∗(µC , a) = d∗(µ̂C , a).

We will show that this d̂(a) is what Theorem 2 claims.
[ Step 2] We will show that d̂(a) has the properties claimed in Theorem 2.

We show Theorem 2-(1). Fix d ∈ (c, d̂(a)). Then, d < d̂(a) guarantees that there
exists some µ′C ∈ MC(a) such that d < d∗(µ′C , a) ≤ d̂(a). This means λ(µ′C , a, d) <
0 because λ(µ′C , a, d

∗(µ′C , a)) = 0 and λ(µ′C , a, d̃) is strictly increasing in d̃. Recall
from the proof of Theorem 1 that λ(µ̄C(a, d), a, d) > 0. Then, there exists µC ∈
(µ′C , µ̄C(a, d)) such that λ(µC , a, d) = 0 because λ(µ̃C , a, d) is continuous in µ̃C . Set
µ = µ̂(µC). Then, this µ is a three-mode equilibrium distribution in a prisoner’s
dilemma PD((a, b, c, d), f).

We show Theorem 2-(2). It is immediate from the way of construction of d̂(a)
that if d̂(a) < d < a, then there is no µC ∈MC(a) \ 0 that satisfies λ(µC , a, d) = 0. If
µC 6∈MC(a), λ(µC , a, d) = 0 never holds because if it were the case that λ(µC , a, d) = 0,
it must be the case that λ(µC , a,

1
2c + 1

2d) < 0, a contradiction to µC 6∈ MC(a).
Hence, if d̂(a) < d < a, there is no three-mode equilibrium in a prisoner’s dilemma
PD((a, b, c, d), f).

We show the remaining properties of d̂(a). First, we show that d̄(a) ≤ d̂(a) < a.
Note that d∗(0, a) = d̄(a). Therefore, d̂(a) = supµC∈MC(a) d

∗(µC , a) ≥ d∗(0, a) = d̄(a).
If d̄(a) = d̂(a), it is also immediate that d̂(a) < a because d̄(a) < a by Corollary
1. Consider the other case of d̄(a) < d̂(a). Then, d̂(a) = maxµC∈MC(a) d

∗(µC , a) =
d∗(µ̂C , a) for some µ̂C ∈MC(a)\0 by Claim 2. Hence, it follows that d̂(a) < a because
c < d∗(µ̂C , a) < a.

Second, from the fact that c < d̄(a) ≤ d̂(a) < a < b, which we have just established,
it immediately follows that lima→c d̂(a) = c and it also follows that lima→b d̂(a) = b,
because lima→b d̄(a) = b by Corollary 1.

Third, we show that d̂(a) is strictly increasing. Fix a′, a′′ ∈ (c, b) such that a′ < a′′.
We will show below that

1. MC(a′) ⊆MC(a′′), and

2. d∗(µC , a
′) < d∗(µC , a

′′) for every µC ∈MC(a′).

Let us show the first fact that MC(a′) ⊆ MC(a′′). Recall from Lemma 6-(1)
that a′ < a′′ implies µ̄C(a′, d) < µ̄C(a′′, d) for each d ∈ (c, a′). This means that
¯̄µC(a′) = limd↓c µ̄C(a′, d) ≤ limd↓c µ̄C(a′′, d) = ¯̄µC(a′′). Therefore, [0, ¯̄µC(a′)) ⊆
[0, ¯̄µC(a′′)) and λ(µC , a

′) is defined over µC ∈ [0, ¯̄µC(a′)), while λ(µC , a
′′) is defined over

µC ∈ [0, ¯̄µC(a′′)). Now, take µC ∈ MC(a′). Then, µC ∈ [0, ¯̄µC(a′)) and λ(µC , a
′) < 0.

It follows from µC ∈ [0, ¯̄µC(a′)) that µC ∈ [0, ¯̄µC(a′′)) and λ(µC , a
′′) is defined. Fur-

thermore, if λ(µC , a
′, d) is defined for d such that µC ∈ [0, µ̄C(a′, d)], then µ̄C(a′, d) <

µ̄C(a′′, d) guarantees that λ(µC , a
′′, d) is also defined for the d, and Lemma 6-(2)
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implies that λ(µC , a
′, d) > λ(µC , a

′′, d). Hence, λ(µC , a
′) = limd↓c λ(µC , a

′, d) ≥
limd↓c λ(µC , a

′′, d) = λ(µC , a
′′). This leads us to conclude that 0 > λ(µC , a

′) ≥
λ(µC , a

′′). Hence µC ∈MC(a′′).
Let us show the second fact that d∗(µC , a

′) < d∗(µC , a
′′) for every µC ∈MC(a′). By

way of construction, it holds that λ(µC , a
′, d∗(µC , a

′)) = 0 and λ(µC , a
′′, d∗(µC , a

′′)) =
0. It follows from Lemma 6-(2) that a′ < a′′ implies 0 = λ(µC , a

′, d∗(µC , a
′)) >

λ(µC , a
′′, d∗(µC , a

′)). Then, it follows from Lemma 6-(2) that λ(µC , a
′′, d∗(µC , a

′′)) =
0 > λ(µC , a

′′, d∗(µC , a
′)) implies d∗(µC , a

′′) > d∗(µC , a
′).

Then, it follows from the second fact that d̂(a′) = supµC∈MC(a′) d
∗(µC , a

′) =
d∗(µ̂C , a

′) < d∗(µ̂C , a
′′) where µ̂C is the µ̂C for a = a′ stated in Claim 2. It follows from

the first fact that d∗(µ̂C , a
′′) ≤ supµC∈MC(a′) d

∗(µC , a
′′) ≤ supµC∈MC(a′′) d

∗(µC , a
′′) =

d̂(a′′). These establish that d̂(a′) < d̂(a′′).
Finally, we show that d̂(a) is continuous. Fix a ∈ (c, b). Consider a sequence

{an}∞n=1 such that an ≤ a and limn→∞ an = a. We show that limn→∞ d̂(an) = d̂(a).
Without loss of generality, we consider an increasing sequence {an}∞n=1; that is, an ≤
an+1. Then, limn→∞ d̂(an) exists and limn→∞ d̂(an) ≤ d̂(a) because d̂(ã) is strictly
increasing so that d̂(an) ≤ d̂(an+1) ≤ d̂(a). We show that limn→∞ d̂(an) ≥ d̂(a). Let µ̂C

achieve d̂(a) = maxµC∈MC(a) d
∗(µC , a) = d∗(µ̂C , a) as in Claim 2. Note that λ(µ̂C , a) <

0 because µ̂C ∈ MC(a). Therefore, there exists d ∈ (c, a) such that λ(µ̂C , a, d) is
defined and λ(µ̂C , a, d) < 0. Then, there exists N such that λ(µ̂C , a

n, d) < 0 for
every n ≥ N because limn→∞ an = a and λ(µ̂C , ã, d) is continuous in ã. This means
that λ(µ̂C , a

n) < 0 for every n ≥ N so that µ̂C ∈ MC(an) for every n ≥ N . Then,
d∗(µ̂C , a

n) is defined for every n ≥ N . Note that d∗(µ̃C , ã) is continuous in (µ̃C , ã),
because d∗(µ̃C , ã) is a unique solution to λ(µ̃C , ã, d) = 0 and λ(µ̃C , ã, d) is continuous
in (µ̃C , ã, d). Therefore, limn→∞ d∗(µ̂C , a

n) = d∗(µ̂C , a). Hence, limn→∞ d̂(an) =
limn→∞ supµC∈MC(an) d

∗(µC , a
n) ≥ limn→∞ d∗(µ̂C , a

n) = d∗(µ̂C , a) = d̂(a).
Consider a sequence {an}∞n=1 such that an ≥ a and limn→∞ an = a. Without loss

of generality, we consider a decreasing sequence {an}∞n=1; that is, an ≥ an+1. Then,
limn→∞ d̂(an) exists and limn→∞ d̂(an) ≥ d̂(a) because d̂(ã) is strictly increasing so that
d̂(an) ≥ d̂(an+1) ≥ d̂(a). We show by contradiction that limn→∞ d̂(an) = d̂(a). Sup-
pose that limn→∞ d̂(an) > d̂(a). Let µ̂n

C achieve d̂(an) = maxµC∈MC(an) d
∗(µC , a

n) =
d∗(µ̂n

C , a
n) for a = an in Claim 2. Then, a sequence {µ̂n

C}∞n=1 has a convergent subse-
quence because each µ̂n

C is in a compact set [0, 1]. Without loss of generality, we as-
sume that {µ̂n

C}∞n=1 itself is convergent, and we denote limn→∞ µ̂n
C = µ̂C . Then, µ̂C ∈

[0, µ̄C(a, limn→∞ d∗(µ̂n
C , a))] because µ̂n

C ∈ [0, µ̄C(an, d∗(µ̂n
C , a

n))], limn→∞ µ̂n
C = µ̂C ,

limn→∞ an = a, and µ̄C(ã, d̃) is continuous in (ã, d̃). Therefore, λ(µ̂C , a, limn→∞ d∗(µ̂n
C , a))

is defined. It must be the case that λ(µ̂C , a, limn→∞ d∗(µ̂n
C , a)) ≤ 0 because if it

were the case that λ(µ̂C , a, limn→∞ d∗(µ̂n
C , a)) > 0, there must exist N such that

λ(µ̂N
C , a

N , d∗(µ̂N
C , a)) > 1

2λ(µ̂N
C , a

N , limn→∞ d∗(µ̂n
C , a)) > 0, a contradiction to the

condition that λ(µ̂N
C , a

N , d∗(µ̂N
C , a)) = 0. We supposed that limn→∞ d∗(µ̂n

C , a
n) =

limn→∞ d̂(an) > d̂(a). Therefore, λ(µ̂C , a, limn→∞ d∗(µ̂n
C , a)) ≤ 0 implies λ(µ̂C , a, d̂(a)) <

0 by Lemma 6-(2). Hence, λ(µ̂C , a) < 0 so that µ̂C ∈ MC(a). Therefore, d∗(µ̂C , a)
is defined. Then, limn→∞ d̂(an) = limn→∞ d∗(µ̂n

C , a
n) = d∗(µ̂C , a) because, as we noted

above, d∗(µ̃C , ã) is continuous in (µ̃C , ã). This means that d̂(a) = supµC∈MC(a) d
∗(µC , a) ≥

d∗(µ̂C , a) = limn→∞ d̂(an) > d̂(a). This is a contradiction.
[ Step 3] We prove two claims presented in Step 1.

First, we prove Claim 1. Consider the behavior of µ̄C(a, d) with respect to d. Recall
from Lemma 6-(1) that µ̄C(a, d) is strictly decreasing in d ∈ (c, a). To find its limit
as d goes to a, recall from the proof of Lemma 4 (Step 5) that µ̄C(a, d) is a unique
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solution µ̄C to the equation (28), which is rearranged into

µ̄C = φ
(
µ̄Cβ ≥ µ̄C

b− d

b− c
− a− d

b− c

)
.

This means that as d goes to a, µ̄C(a, d) approaches

lim
d↑a

µ̄C(a, d) = φ
(
(lim
d↑a

µ̄C(a, d))β ≥ (lim
d↑a

µ̄C(a, d))
b− a

b− c
− a− a

b− c

)
= φ(β ≥ β∗).

Hence, if the given µC ∈ MC(a) \ 0 is φ(β ≥ β∗) < µC < ¯̄µC(a), there exists some
d′′ ∈ (c, a) such that µC = µ̄C(a, d′′) because µ̄C(a, d) is continuous in d by the proof
of Lemma 4 (Step 5). Recall from the proof of Theorem 1 that λ(µ̄C(a, d′′), a, d′′) > 0.
Therefore, λ(µC , a, d

′′) > 0.
Consider µC in the remaining case of 0 < µC ≤ φ(β ≥ β∗). In this case, it holds for

every d ∈ (c, a) that µC ≤ µ̄C(a, d) so that λ(µC , a, d) is defined. Recall from Lemma
4 that µ̂(µC , a, d) lies in ∆′ so that a−d

d−c µ̂CDD(µC , a, d) ≥ µ̂DDD(µC , a, d) holds for any
d ∈ (c, a). This means that limd↑a µ̂DDD(µC , a, d) = 0. On the other hand, note by
Lemma 2 that

ψDDD(µ̂(µC , a, d))
= φ(T ∗

DDD(µ̂(µC , a, d)))
= φ(T ∩ {(α, β)|β ≤ H(α|µ̂(µC , a, d)), β ≤ β∗})

= φ(T ∩ {(α, β)|β ≤ µ̂DDD(µC , a, d)
µ̂C(µC , a, d)

α+ β∗ +
µ̂DDD(µC , a, d)(d− c) − µ̂CDD(µC , a, d)(a− d)

µ̂C(µC , a, d)(b− c)
, β ≤ β∗})

= φ(T ∩ {(α, β)|β ≤ µ̂DDD(µC , a, d)
µC

α+ β∗ +
µ̂DDD(µC , a, d)(d− c) − µ̂CDD(µC , a, d)(a− d)

µC(b− c)
, β ≤ β∗})

where the last equality follows from µC = µ̂C(µC , a, d). This means that limd↑a ψDDD(µ̂(µC , a, d)) =
φ(β ≤ β∗), because limd↑a µ̂DDD(µC , a, d) = 0 guarantees that

lim
d↑a

[ µ̂DDD(µC , a, d)
µC

α+ β∗ +
µ̂DDD(µC , a, d)(d− c) − µ̂CDD(µC , a, d)(a− d)

µC(b− c)

]
= β∗.

Hence

lim
d↑a

λ(µC , a, d) = lim
d↑a

ψDDD(µ̂(µC , a, d)) − lim
d↑a

µ̂DDD(µC , a, d) = φ(β ≤ β∗) > 0.

Therefore, there exists d′′ close enough to a such that λ(µC , a, d
′′) > 0.

Second, we prove Claim 2. Recall from Step 2 that we noticed that d∗(0, a) = d̄(a)
and we showed that d̂(a) = supµC∈MC(a) d

∗(µC , a) ≥ d∗(0, a) = d̄(a). If supµC∈MC(a) d
∗(µC , a) =

d̄(a), then µ̂C = 0 achieves maxµC∈MC(a) d
∗(µC , a) and d̂(a) = d̄(a).

Consider the other case of supµC∈MC(a) d
∗(µC , a) > d̄(a). Then, there must exist

{µn
C}∞n=1 such that µn

C ∈ MC(a) and limn→∞ d∗(µn
C , a) = supµC∈I d

∗(µC , a). The
sequence contains a convergent subsequence because each µn

C is a probability and
contained in a compact set [0, 1]. Without loss of generality, we assume that {µn

C}∞n=1

itself is convergent, and we denote µ̂C = limn→∞ µn
C .

Note that limn→∞ d∗(µn
C , a) > d̄(a) implies that there existsN such that d∗(µn

C , a) >
d̄(a) for any n ≥ N . Therefore, [0, µ̄C(a, d∗(µn

C , a))] ⊂ [0, µ̄C(a, d̄(a))] for any n ≥ N by
Lemma 6-(1). This guarantees that µ̂C ∈ [0, µ̄C(a, d̄(a))] because µn

C ∈ [0, µ̄C(a, d∗(µn
C , a))]

for each n. This means that λ(µ̂C , a, d̄(a)) is defined. Therefore, λ(µ̂C , a) is defined.

60



Now, we show that λ(µ̂C , a) < 0; that is, µ̂C ∈ MC(a) so that µ̂C achieves
maxµC∈MC(a) d

∗(µC , a). Suppose to the contrary that λ(µ̂C , a) ≥ 0. Then, it must
be the case that λ(µ̂C , a, d) > 0 for every d ∈ (c, a) for which λ(µ̂C , a, d) is defined.
To see this, suppose that λ(µ̂C , a, d) is defined and λ(µ̂C , a, d) ≤ 0 for some d ∈ (c, a).
Then, µ̂C ∈ [0, µ̄C(a, d)] implies µ̂C ∈ [0, µ̄C(a, 1

2c + 1
2d)] by Lemma 6-(1) so that

λ(µ̂C , a,
1
2c + 1

2d) is defined, and λ(µ̂C , a, d) ≤ 0 implies λ(µ̂C , a,
1
2c + 1

2d) < 0 by
Lemma 6-(2). This means λ(µ̂C , a) < 0, a contradiction. Hence, λ(µ̂C , a, d) > 0 for
every d ∈ (c, a) for which λ(µ̂C , a, d) is defined. Take d = d̄(a), for which we showed
above that λ(µ̂C , a, d̄(a)) is defined. Then, λ(µ̂C , a, d̄(a)) > 0. Then, there exists
N ′ such that λ(µN ′

C , a, d∗(µN ′
C , a)) > λ(µN ′

C , a, d̄(a)) > 1
2λ(µ̂C , a, d̄(a)) > 0 because

limn→∞ d∗(µn
C , a) > d̄(a), µ̂C = limn→∞ µn

C , and λ(µ̃C , a, d̃) is continuous in µ̃C and
strictly increasing in d̃. This contradicts the condition that λ(µN ′

C , a, d∗(µN ′
C , a)) = 0.

Hence, λ(µ̂C , a) < 0 must hold. (Q.E.D.)

Proof of Lemma 7
Lemma 7-(2) is immediate because β∗ = b−a

b−c . As for Lemma 7-(1), we show that
α∗(µmin(a, d)) is strictly increasing in a for a range of (a, d) with c < d < d̄(a). The
remaining part of Lemma 7-(1) is proved similarly.

Fix d ∈ (c, b) and consider a′, a′′ such that a′ < a′′. Suppose that (a′, d) lies
in a range with c < d < d̄(a′). Then, by Corollary 1, (a′′, d) also lies in a range
with c < d < d̄(a′) < d̄(a′′). Therefore, we have µmin

C (a′, d) < µmin
C (a′′, d) by The-

orem 3. We show that α∗(µmin(a′, d)) < α∗(µmin(a′′, d)). Suppose to the contrary
that α∗(µmin(a′, d)) ≥ α∗(µmin(a′′, d)). Note by Lemma 7-(2) that β∗(a′) = b−a′

b−c >
b−a′′

b−c = β∗(a′′) when a′ < a′′. Then, together with the fact that µmin
CDD(a′, d) =

ψCDD(µmin(a′, d), a′, d) and µmin
CDD(a′′, d) = ψCDD(µmin(a′′, d), a′′, d) in the equilibria,

α∗(µmin(a′, d)) ≥ α∗(µmin(a′′, d)) and β∗(a′) > β∗(a′′) imply that

µmin
CDD(a′, d) = ψCDD(µmin(a′, d), a′, d)

= φ(T ∗
CDD(µmin(a′, d), a′, d))

= φ(T ∩ {(α, β)|α > α∗(µmin(a′, d)), β > β∗(a′)})
< φ(T ∩ {(α, β)|α > α∗(µmin(a′′, d)), β > β∗(a′′)})
= φ(T ∗

CDD(µmin(a′′, d), a′′, d))

= ψCDD(µmin(a′′, d), a′′, d)

= µmin
CDD(a′′, d).

Then, µmin
C (a′, d) < µmin

C (a′′, d) and µmin
CDD(a′, d) < µmin

CDD(a′′, d) imply that

µmin
DDD(a′, d) = 1−µmin

C (a′, d)−µmin
CDD(a′, d) > 1−µmin

C (a′′, d)−µmin
CDD(a′′, d) = µmin

DDD(a′′, d).

Hence, µmin
CDD(a′,d)

µmin
DDD(a′,d)

<
µmin

CDD(a′′,d)

µmin
DDD(a′′,d)

. Then, it must hold for the expression (4) of α∗ that

α∗(µmin(a′, d)) =
a′ − d

b− c

µmin
CDD(a′, d)
µmin

DDD(a′, d)
−d− c

b− c
<
a′′ − d

b− c

µmin
CDD(a′′, d)
µmin

DDD(a′′, d)
−d− c

b− c
= α∗(µmin(a′′, d))

when a′ < a′′. This contradicts the supposition α∗(µmin(a′, d)) ≥ α∗(µmin(a′′, d)).
(Q.E.D.)

Proof of Theorem 5
We show that µmin

DDD(a, d) is strictly decreasing in a for a range of (a, d) with α∗(µmin(a, d)) ≤
β∗ and c < d < d̄(a). The remaining part of Theorem 5 is proved similarly.
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Fix d ∈ (c, b) and consider a′, a′′ such that a′ < a′′. Suppose that (a′, d) and (a′′, d)
lie in a range with c < d < d̄(a′) < d̄(a′′) and α∗(µmin(a′, d)) < α∗(µmin(a′′, d)) ≤
β∗(a′′) < β∗(a′) where Corollary 1 guarantees d̄(a′) < d̄(a′′) and Lemma 7 guaran-
tees α∗(µmin(a′, d)) < α∗(µmin(a′′, d)) and β∗(a′′) < β∗(a′). Note by Lemma 2 that
α∗(µmin(a′, d)) < β∗(a′) and α∗(µmin(a′′, d)) ≤ β∗(a′′) means that

{(α, β) ∈ T |β < β∗(a′)} = T ∗
C(µmin(a′, d), a′, d) ∪ T ∗

DDD(µmin(a′, d), a′, d)

{(α, β) ∈ T |β < β∗(a′′)} = T ∗
C(µmin(a′′, d), a′′, d) ∪ T ∗

DDD(µmin(a′′, d), a′′, d).

Here, β∗(a′′) < β∗(a′) implies that

φ({(α, β) ∈ T |β < β∗(a′)}) > φ({(α, β) ∈ T |β < β∗(a′′)})

so that

φ(T ∗
C(µmin(a′, d), a′, d)) + φ(T ∗

DDD(µmin(a′, d), a′, d))

> φ(T ∗
C(µmin(a′′, d), a′′, d)) + φ(T ∗

DDD(µmin(a′′, d), a′′, d)).

In a range with c < d < d̄(a′) < d̄(a′′), Theorem 3 applies and we have

φ(T ∗
C(µmin(a′, d), a′, d)) = µmin

C (a′, d) < µmin
C (a′′, d) = φ(T ∗

C(µmin(a′′, d), a′′, d)).

Therefore,

µmin
DDD(a′, d) − µmin

DDD(a′′, d) = φ(T ∗
DDD(µmin(a′, d), a′, d)) − φ(T ∗

DDD(µmin(a′′, d), a′′, d))

> φ(T ∗
C(µmin(a′′, d), a′′, d)) − φ(T ∗

C(µmin(a′, d), a′, d))
> 0.

(Q.E.D.)

Proof of Lemma 8
The condition (21) that a type (α, β) prefers C to CDD and DDD under a belief µ is
rewritten as

µCDD

µC
(a− d) > γ(d− (c− α(b− c))) + (max[a, b− β(b− c)] − a).

Consider (α, β), (α′, β′) such that

γ(d−(c−α(b−c)))+(max[a, b−β(b−c)]−a) < γ(d−(c−α′(b−c)))+(max[a, b−β′(b−c)]−a).

Then, if

γ(d− (c− α′(b− c))) + (max[a, b− β′(b− c)] − a) <
µCDD

µC
(a− d),

then
γ(d− (c− α(b− c))) + (max[a, b− β(b− c)] − a) <

µCDD

µC
(a− d).

Furthermore, we can take µCDD
µC

such that

γ(d−(c−α(b−c)))+(max[a, b−β(b−c)]−a) < µCDD

µC
(a−d) < γ(d−(c−α′(b−c)))+(max[a, b−β′(b−c)]−a).

because we can choose any positive value for µCDD
µC

given γ = µDDD
µC

when we compare
the incentives to lead between (α, β) and (α′, β′). These mean that (α, β) has a stronger
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incentive to lead under the belief ratio γ than (α′, β′). Therefore, a type (α, β) has the
strongest incentive to lead under the belief ratio γ if and only if (α, β) is a solution to

min
(α̃,β̃)∈T

γ(d− (c− α̃(b− c))) + (max[a, b− β̃(b− c)] − a).

Consider the minimum of γ(d− (c− α̃(b− c)))+(max[a, b− β̃(b− c)]−a) in a subset of
T with β̃ ≥ β∗. Note that max[a, b− β̃(b− c)] − a = 0 if β̃ ≥ β∗ so that the objective
for the minimization reduces to γ(d − (c − α̃(b − c))). The minimum over the set of
(α̃, β̃) with α̃ ≥ β̃ ≥ β∗ is attained at (β∗, β∗). This means that the minimum of
γ(d− (c− α̃(b− c)))+ (max[a, b− β̃(b− c)]−a) over T is attained by (α, β) in a subset
of T with β̃ ≤ β∗. Note that max[a, b − β̃(b − c)] − a = b − β̃(b − c) − a if β̃ ≤ β∗ so
that the objective for the minimization reduces to

γ(d− (c− α̃(b− c))) + (b− β̃(b− c) − a) = (b− c)(γα̃− β̃) + γ(d− c) + (b− a).

The minimum of this objective over the set of (α̃, β̃) with 0 ≤ β̃ ≤ β∗ and β̃ ≤ α̃ is
attained by (α, β) = (0, 0) if γ > 1, (β∗, β∗) if γ < 1, and {(α, β) = t(0, 0) + (1 −
t)(β∗, β∗)|0 ≤ t ≤ 1} if γ = 1. (Q.E.D.)

Proof of Lemma 9
Lemmas 9-(1) and (2) are restatements of Lemma 7. We prove Lemma 9-(3). In
particular, we prove that γ∗(µmin(a, d)) is strictly decreasing in a for a range of (a, d)
with c < d < d̄(a). The remaining parts of Lemma 9-(3) are proved similarly.

Fix d ∈ (c, b) and consider a′, a′′ such that a′ < a′′. Suppose that (a′, d) and (a′′, d)
lie in a range with c < d < d̄(a′) < d̄(a′′) where Corollary 1 guarantees d̄(a′) < d̄(a′′).

We show that γ∗(µmin(a′, d)) = µmin
DDD(a′,d)

µmin
C (a′,d)

>
µmin

DDD(a′′,d)

µmin
C (a′′,d)

= γ∗(µmin(a′′, d)). Suppose

to the contrary that µmin
DDD(a′,d)

µmin
C (a′,d)

≤ µmin
DDD(a′′,d)

µmin
C (a′′,d)

. Note by Theorem 3 that µmin
C (a′, d) <

µmin
C (a′′, d) when a′ < a′′ for a range with c < d < d̄(a′) < d̄(a′′). Then, µmin

DDD(a′,d)

µmin
C (a′,d)

≤
µmin

DDD(a′′,d)

µmin
C (a′′,d)

implies that µmin
DDD(a′, d) < µmin

DDD(a′′, d). On the other hand, note by
Lemma 2 that

µmin
DDD(a′, d) = φ(T ∩ {(α, β)|β ≤ H(α|µmin(a′, d), a′, d), β ≤ β∗(a′)})

µmin
DDD(a′′, d) = φ(T ∩ {(α, β)|β ≤ H(α|µmin(a′′, d), a′′, d), β ≤ β∗(a′′)})

where

H(α|µmin(a′, d), a′, d) =
µmin

DDD(a′, d)
µmin

C (a′, d)
(α− α∗(µmin(a′, d), a′, d)) + β∗(a′)

H(α|µmin(a′′, d), a′′, d) =
µmin

DDD(a′′, d)
µmin

C (a′′, d)
(α− α∗(µmin(a′′, d), a′′, d)) + β∗(a′′)

and β∗(a′) = b−a′

b−c , β∗(a′′) = b−a′′

b−c . By Lemma 9-(1) and (2), α∗(µmin(a′, d), a′, d) <
α∗(µmin(a′′, d), a′′, d) and β∗(a′) > β∗(a′′) when a′ < a′′ for a range with c < d <

d̄(a′) < d̄(a′′). Then, together with µmin
DDD(a′,d)

µmin
C (a′,d)

≤ µmin
DDD(a′′,d)

µmin
C (a′′,d)

, we must have

{(α, β)|β ≤ H(α|µmin(a′, d), a′, d), β ≤ β∗(a′)} ) {(α, β)|β ≤ H(α|µmin(a′′, d), a′′, d), β ≤ β∗(a′′)}

so that µmin
DDD(a′, d) > µmin

DDD(a′′, d). This is a contradiction. (Q.E.D.)

Proof of Theorem 7
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We prove Theorem 7-(2). Theorem 7-(1) is proved similarly.
Consider (a, d) and (a′, d′) such that a > a′, d < d′, and c < d′ < d̄(a′). Then,

(a, d) also lies in a range with c < d < d̄(a) because d̄(a′) < d̄(a) by Corollary 1 when
a > a′. Therefore, both PD((a, b, c, d), f) and PD((a′, b, c, d′), f) admit a three-mode
equilibrium. Recall from Lemma 2 that

T ∗
C(µmin(a, d), a, d) = {(α, β)|β ≥ H(α|µmin(a, d), a, d), α ≤ α∗(µmin(a, d), a, d)}
T ∗

C(µmin(a′, d′), a′, d′) = {(α, β)|β ≥ H(α|µmin(a′, d′), a′, d′), α ≤ α∗(µmin(a, d), a, d)}

where

H(α|µmin(a, d), a, d) =
µmin

DDD(a, d)
µmin

C (a, d)
(α− α∗(µmin(a, d), a, d)) + β∗(a)

H(α|µmin(a′′, d), a′′, d) =
µmin

DDD(a′, d′)
µmin

C (a′, d′)
(α− α∗(µmin(a′, d′), a′, d′)) + β∗(a′).

We show that T ∗
C(µmin(a, d), a, d) is a leadership pattern of a more equity concerned

leader than T ∗
C(µmin(a′, d′), a′, d′).

To compare T ∗
C(µmin(a, d), a, d) with T ∗

C(µmin(a′, d′), a′, d′), consider two lines β =
H(α|µmin(a, d), a, d) and β = H(α|µmin(a′, d′), a′, d′), which define the boundaries of
T ∗

C(µmin(a, d), a, d) and T ∗
C(µmin(a′, d′), a′, d′) respectively. Given that c < d < d̄(a)

and c < d′ < d̄(a′), Lemma 9 applies and we have α∗(µmin(a, d), a, d) > α∗(µmin(a′, d′), a′, d′),

β∗(a) < β∗(a′), and γ∗(µmin(a, d)) = µmin
DDD(a,d)

µmin
C (a,d)

<
µmin

DDD(a′,d′)

µmin
C (a′,d′)

= γ∗(µmin(a′, d′)). Then,

γ∗(µmin(a, d)) < γ∗(µmin(a′, d′)) implies that there exists a unique (α̃, β̃) in R2 that
satisfies β̃ = H(α̃|µmin(a, d), a, d) and β̃ = H(α̃|µmin(a′′, d), a′′, d) simultaneously. Fur-
thermore, α∗(µmin(a, d), a, d) > α∗(µmin(a′, d′), a′, d′) and β∗(a) < β∗(a′) imply that
(α∗(µmin(a, d), a, d), β∗(a)) is located south east of (α∗(µmin(a′, d′), a′, d′), β∗(a′)). This
in turn implies that α̃ < α∗(µmin(a, d), a, d), β̃ < β∗(a), α̃ < α∗(µmin(a′, d′), a′, d′), and
β̃ < β∗(a′).

The three types (α̃, β̃), (α∗(µmin(a, d), a, d), β∗(a)), and (α∗(µmin(a′, d′), a′, d′), β∗(a′))
identified above may or may not be included in the type space T . One of the pos-
sibilities is a case in which all of them are in T . Figure 15 demonstrates this case.
Then, (α∗(µmin(a, d), a, d), β∗(a)) ∈ T means that when we define (α̂, β̂) by α̂ =
α∗(µmin(a, d), a, d) and β̂ = max{β|(α∗(µmin(a, d), a, d), β) ∈ T}, it holds that (α̂, β̂) ∈
T ∗

C(µmin(a, d), a, d) and that α ≤ α̂ and β ≤ β̂ for any (α, β) ∈ T ∗
C(µmin(a, d), a, d); that

is, the type (α̂, β̂) is the most inequity concerned in both envy and guilt among all the
leader types in T ∗

C(µmin(a, d), a, d). Similarly, (α̂′, β̂′) such that α̂′ = α∗(µmin(a′, d′), a′, d′)
and β̂′ = max{β′|(α∗(µmin(a′, d′), a′, d′), β′) ∈ T} is the most inequity concerned in
both envy and guilt among all the leader types in T ∗

C(µmin(a′, d′), a′, d′). Furthermore,
(α̂′, β̂′) ≤ (α̂, β̂) holds by α∗(µmin(a, d), a, d) > α∗(µmin(a′, d′), a′, d′). Hence, the con-
dition (1) for T ∗

C(µmin(a, d), a, d) to be a leadership pattern of more equity concerned
leader than T ∗

C(µmin(a′, d′), a′, d′) is satisfied.
Note also in this case that T ∗

C(µmin(a′, d′), a′, d′) \ T ∗
C(µmin(a, d), a, d) 6= ∅ and

T ∗
C(µmin(a, d), a, d) \ T ∗

C(µmin(a′, d′), a′, d′) 6= ∅. Take (α′, β′) ∈ T ∗
C(µmin(a′, d′), a′, d′) \

T ∗
C(µmin(a, d), a, d) and (α, β) ∈ T ∗

C(µmin(a, d), a, d) \ T ∗
C(µmin(a′, d′), a′, d′) arbitrar-

ily. Then, it must hold for (α′, β′) that β′ ≥ H(α′|µmin(a′, d′), a′, d′) and β′ <
H(α′|µmin(a, d), a, d). This means that α′ < α̃ and β′ < β̃. On the other hand, it
must hold for (α, β) that β ≥ H(α|µmin(a, d), a, d) and β < H(α|µmin(a′, d′), a′, d′).
This means that α̃ < α and β̃ < β. Hence, we have (α′, β′) ≤ (α̃, β̃) ≤ (α, β). Thus,
the condition (2) for T ∗

C(µmin(a, d), a, d) to be a leadership pattern of more equity
concerned leader than T ∗

C(µmin(a′, d′), a′, d′) is also satisfied.
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Figure 15: ordered-leader-set

Similarly, we can show that T ∗
C(µmin(a, d), a, d) is a leadership pattern of a more eq-

uity concerned leader than T ∗
C(µmin(a′, d′), a′, d′) in all the remaining cases of relations

of the three types (α̂, β̂), (α∗(µmin(a, d), a, d), β∗(a)), and (α∗(µmin(a′, d′), a′, d′), β∗(a′))
to the type set T . (Q.E.D.)

Proof of Theorem 8
We show Theorem 8-(2). Theorem 8-(1) is proved similarly. Fix d ∈ (c, b). Note
that there exists a three-mode equilibrium with the minimum leadership distribution
µmin(a, d) for any a ∈ (d̄−1(d), b) because c < d = d̄(d̄−1(d)) < d̄(a) by Corollary 1.

Suppose that γ∗(µmin(ã, d)) < 1 for any a ∈ (d̄−1(d), b). Then, the type of the
strongest incentive to lead in the three-mode equilibrium distribution µmin(a, d) is the
(β∗, β∗)-type for any a ∈ (d̄−1(d), b) by Lemma 8. Hence, Theorem 8-(2) holds for
amin

L (d) = d̄−1(d).
Suppose that γ∗(µmin(a′, d)) ≥ 1 for some a′ ∈ (d̄−1(d), b). Then, γ∗(µmin(1

2 d̄
−1(d)+

1
2a

′, d)) > 1 by Lemma 9. Examine γ∗(µmin(a, d)) = µmin
DDD(a,d)

µmin
C (a,d)

for a ∈ (a′, b). Theo-

rem 3 guarantees that µmin
C (a, d) > µmin

C (a′, d) for any a ∈ (a′, b). On the other hand,
T ∗

DDD(µmin(a, d), a, d) ⊆ {(α̃, β̃)|β̃ ≤ β∗(a)} by Lemma 2. Note that lima↑b β
∗(a) =

lima↑b
b−a
b−c = 0. Hence, lima↑b µ

min
DDD(a, d) = lima↑b φ(T ∗

DDD(µmin(a, d), a, d)) ≤ lima↑b φ({(α̃, β̃)|β̃ ≤
β∗(a)}) = 0. This means that there exists a ∈ (a′, b) such that µmin

DDD(a, d) <

µmin
C (a′, d). Then, γ∗(µmin(a, d)) = µmin

DDD(a,d)

µmin
C (a,d)

<
µmin

C (a′,d)

µmin
C (a′,d)

= 1. Thus, we have a′, a

with d̄−1(d) < a′ < a < b, for which γ∗(µmin(1
2 d̄

−1(d) + 1
2a

′, d)) > 1 > γ∗(µmin(a, d)).
Then, when we set amin

L (d) ≡ sup{a ∈ (d̄−1(d), b)|γ∗(µmin(a, d)) ≥ 1}, it immediately
follows that d̄−1(d) < amin

L (d) < b, and it holds by Lemma 9 that γ∗(µmin(ã, d)) > 1 for
ã ∈ (d̄−1(d), amin

L (d)), while γ∗(µmin(ã, d)) < 1 for ã ∈ (amin
L (d), b). This means that

the type of the strongest incentive to lead in the three-mode equilibrium distribution
µmin(a, d) is Materialist if a < amin

L (d) and the type (β∗, β∗) if a > amin
L (d).

We show Theorem 8-(3). We show that amin
L (d) is increasing. Fix d′, d′′ such that

c < d′ < d′′ < b. We show that amin
L (d′) ≤ amin

L (d′′). Suppose to the contrary that
amin

L (d′) > amin
L (d′′). Recall that we set amin

L (d′) = sup{a ∈ (d̄−1(d′), b)|γ∗(µmin(a, d′)) ≥
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1} if the set on the right-hand side is not empty, and we set amin
L (d′) = d̄−1(d′) oth-

erwise. amin
L (d′′) is parallel. Then, the supposition amin

L (d′) > amin
L (d′′) implies that

in the definition of amin
L (d′) , even {a ∈ (d̄−1(d′′), b)|γ∗(µmin(a, d′)) ≥ 1} is not empty

and amin
L (d′) = sup{a ∈ (d̄−1(d′′), b)|γ∗(µmin(a, d′)) ≥ 1} because d̄−1(d′) < d̄−1(d′′)

by Corollary 1. Note by Lemma 9 that γ∗(µmin(a, d′)) < γ∗(µmin(a, d′′)) for any
a ∈ (d̄−1(d′′), b). Hence, {a ∈ (d̄−1(d′′), b)|γ∗(µmin(a, d′′)) ≥ 1} is not empty and
sup{a ∈ (d̄−1(d′′), b)|γ∗(µmin(a, d′)) ≥ 1} ≤ sup{a ∈ (d̄−1(d′′), b)|γ∗(µmin(a, d′′)) ≥
1} = amin

L (d′′). This is a contradiction.
Finally, we show that amax

L (d) ≤ amin
L (d) for any d ∈ (c, b). Fix d ∈ (c, b) and con-

sider a ∈ (d̄−1(d), b). We show that γ∗(µmin(a, d)) ≥ γ∗(µmax(a, d)). Suppose to the
contrary that γ∗(µmin(a, d)) < γ∗(µmax(a, d)). Then, it must hold that µmin

DDD(a, d) <

µmax
DDD(a, d) because γ∗(µmin(a, d)) = µmin

DDD(a,d)

µmin
C (a,d)

, γ∗(µmax(a, d)) = µmax
DDD(a,d)

µmax
C (a,d) , and µmin

C (a, d) ≤
µmax

C (a, d). On the other hand, we claim that α∗(µmin
C (a, d), a, d) < α∗(µmax

C (a, d), a, d)
when γ∗(µmin(a, d)) < γ∗(µmax(a, d)). Suppose to the contrary that α∗(µmin

C (a, d), a, d) ≥
α∗(µmax

C (a, d), a, d). Then, it must follow by Lemma 2 that µmin
CDD(a, d) ≤ µmax

CDD(a, d).
Then, it follows that

µmin
DDD(a, d) = 1−µmin

C (a, d)−µmin
CDD(a, d) ≥ 1−µmax

C (a, d)−µmax
CDD(a, d) = µmax

DDD(a, d).

This contradicts µmin
DDD(a, d) < µmax

DDD(a, d). Hence, we must have α∗(µmin
C (a, d), a, d) <

α∗(µmax
C (a, d), a, d). Note by Lemma 2 that

µmin
DDD(a, d) = φ(T ∩ {(α, β)|β ≤ H(α|µmin(a, d), a, d), β ≤ β∗})
µmax

DDD(a, d) = φ(T ∩ {(α, β)|β ≤ H(α|µmax(a, d), a, d), β ≤ β∗})

where

H(α|µmin(a, d), a, d) =
µmin

DDD(a, d)
µmin

C (a, d)
(α− α∗(µmin(a, d), a, d)) + β∗

H(α|µmax(a, d), a, d) =
µmax

DDD(a, d)
µmax

C (a, d)
(α− α∗(µmax(a, d), a, d)) + β∗.

Here, µmin
DDD(a,d)

µmin
C (a,d)

= γ∗(µmin(a, d)) < γ∗(µmax(a, d)) = µmax
DDD(a,d)

µmax
C (a,d) and α∗(µmin

C (a, d), a, d) <

α∗(µmax
C (a, d), a, d) imply that µmin

DDD(a, d) > µmax
DDD(a, d). This contradicts µmin

DDD(a, d) <
µmax

DDD(a, d). Hence, it must be the case that γ∗(µmin(a, d)) ≥ γ∗(µmax(a, d)). This
means that γ∗(µmax(a, d)) < 1 for any a with a > amin

L (d) because γ∗(µmin(a, d)) < 1
if a > amin

L (d). Hence, amax
L (d) ≤ sup{a ∈ (d̄−1(d), b)|γ∗(µmax(a, d)) ≥ 1} ≤ amin

L (d).
(Q.E.D.)

Proof of Theorem 9
We show Theorem 9-(1). First, ∂

∂aφ(β < b−a
b−c |α

∗ ≤ α) < 0 for any α∗ ∈ [0, ᾱ].
Therefore, ∂

∂a minα∗∈[0,ᾱ] φ(β < b−a
b−c |α

∗ ≤ α) < 0. Hence, (d̄ml(a))′ = 1 − (b −
c) ∂

∂a minα∗∈[0,ᾱ] φ(β < b−a
b−c |α

∗ ≤ α) > 0. Second, d̄ml(a) < a because φ(β < β∗|α∗ ≤
α) is continuous in α∗ and φ(β < β∗|α∗ ≤ α) > 0 for each α ∈ [0, ᾱ] so that
minα∗∈[0,ᾱ] φ(β < β∗|α∗ ≤ α) > 0. Third, lim

a→c
d̄ml(a) = c− (b− c) because lim

a→c
φ(β <

β∗|α∗ ≤ α) = φ(β < 1|α∗ ≤ α) = 1. Fourth, lim
a→b

d̄ml(a) = b because lim
a→b

φ(β <

β∗|α∗ ≤ α) = φ(β < 0|α∗ ≤ α) = 0. Finally, there exists āml ∈ (c, b) such that
d̄ml(āml) = c because lim

a→c
d̄ml(a) = c − (b − c) < c < lim

a→b
d̄ml(a) = b and d̄ml(a) is

continuous and strictly increasing.
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We show Theorem 9-(2). Fix (a, d) such that a ∈ (c, ā′ml) and max(c, d̄ml(a)) <
d < d̂(a). Suppose to the contrary that there exists a three-mode equilibrium and it
is either an inequity concerned leader pattern or a hybrid leader pattern. Then, the
three-mode equilibrium distribution µ must satisfy

b− a

b− c
= β∗ ≤ α∗(µ) =

µCDD

µDDD

a− d

b− c
− d− c

b− c

where the first equality is the definition of β∗ and the second equality is by (4). Hence,
it must hold that b−c

a−c ≤ a−d
a−c (1 + µCDD

µDDD
). However, d̄ml(a) < d implies

b− c

a− c
>
a− d

a− c

1
φ(β < β∗|α∗(µ) ≤ α)

≥ a− d

a− c

(
1 +

µCDD

µDDD

)
where the second inequality holds for the reason that, as Lemma 2 shows,

µCDD

µDDD
≤ φ(β > β∗|α∗(µ) ≤ α)
φ(β < β∗|α∗(µ) ≤ α)

in a three-mode equilibrium. This is a contradiction. Therefore, there should be no
three-mode equilibrium of either an inequity concerned leader pattern or a hybrid
leader pattern. (Q.E.D.)

Proof of Theorem 10
[Step 1] Fix a ∈ (c, b). Then, we show that under condition (23), there exists d̄icl(a) ∈
(c, d̄(a)) such that β∗φ(β > β∗) > µCDD for any three-mode equilibrium distribution
µ in any PD((a, b, c, d), f) with d ∈ (c, d̄icl(a)).
(Proof)
Consider the supremum of µCDD

µDDD
when we consider all the three-mode equilibrium

distributions µ in PD((a, b, c, d), f) over d ∈ (c, d̄(a)). Then, it is finite. (We postpone
the proof of this fact to Step 3 below.) This fact implies that

lim
d↓c

[
µCDD − φ

(
α >

µCDD

µDDD
(1 − β∗) and β > β∗

)]
= lim

d↓c

[
φ(α > α∗(µ) and β > β∗) − φ

(
α >

µCDD

µDDD
(1 − β∗) and β > β∗

)]
= lim

d↓c

[
φ
(
α >

µCDD

µDDD
(1 − β∗) − d− c

b− c

(
1 +

µCDD

µDDD

)
and β > β∗

)
− φ

(
α >

µCDD

µDDD
(1 − β∗) and β > β∗

)]
= 0

where the first equality follows from Lemma 2 and the second equality follows from
the expression (4) of α∗(µ). Then, there exists d̄icl(a) ∈ (c, d̄(a)) such that

µCDD−φ
(
α >

µCDD

µDDD
(1−β∗) and β > β∗

)
< β∗φ(β > β∗)−φ

(
α >

β∗φ(β > β∗)
1 − φ(β > β∗)

(1−β∗) and β > β∗
)

for any d ∈ (c, d̄icl(a)), because the condition (23) implies that the right-hand side of
the above inequality is a positive number. Then,

µCDD−φ
(
α >

µCDD

µDDD
(1−β∗) and β > β∗

)
< β∗φ(β > β∗)−φ

(
α >

β∗φ(β > β∗)
µCDD

(1−β∗) and β > β∗
)

for any d ∈ (c, d̄icl(a)), because µCDD < 1 − φ(β > β∗) by Lemma 2. This inequality
implies that β∗φ(β > β∗) > µCDD, because

x− φ
(
α >

x

µDDD
(1 − β∗) and β > β∗

)
67



is strictly increasing in x.
[Step 2] Fix a ∈ (c, b). Take a three-mode equilibrium distribution µ in PD((a, b, c, d), f)
with d ∈ (c, d̄icl(a)). Consider the type (α, β) = (0, 0). Then,

U(0,0)(DDD,µ) − U(0,0)(C, µ) = (µCb+ µCDDd+ µDDDd) − (µCa+ µCDDa+ µDDDc)

> µC(b− a) − µCDD(a− c)
> (φ(β > β∗) − µCDD)(b− a) − µCDD(a− c)
= (b− c)(β∗φ(β > β∗) − µCDD)
> 0

where the first inequality holds by d > c, the second inequality holds because µC >
φ(β > β∗) − µCDD by Lemma 2, and the last inequality holds by Step 1. This means
that C is not a best response for the type (α, β) = (0, 0) so that (0, 0) 6∈ T ∗

C(µ). Hence,
the three-mode equilibrium must be an inequity concerned leader pattern.
[Step 3] We prove the fact that the supremum of µCDD

µDDD
is finite. Suppose to the

contrary that we can find a three-mode equilibrium with an arbitrarily large µCDD
µDDD

.
Then, there exists a sequence of {dn}∞n=1 in (c, d̄(a)) and a corresponding sequence of
{µn}∞n=1 such that µn is a three-mode equilibrium distribution in PD((a, b, c, dn), f)
and lim

n→∞
µn

DDD = 0. Note that lim
n→∞

µn
DDD = 0 implies lim

n→∞
φ(α∗(µn, a, dn) ≤ α and β <

β∗) = 0 because 0 ≤ φ(α∗(µn, a, dn) ≤ α and β < β∗) < φ(T ∗
DDD(µn, a, dn)) = µn

DDD

by Lemma 2. Note also that lim
n→∞

φ(α∗(µn, a, dn) ≤ α and β < β∗) = 0 implies

that lim
n→∞

µn
CDD = lim

n→∞
φ(α∗(µn, a, dn) ≤ α and β > β∗) = 0. Hence, we must

have lim
n→∞

µn
C = 1 − lim

n→∞
µn

CDD − lim
n→∞

µn
DDD = 1. On the other hand, recall that

µn
C < µ̄(a, dn) where µ̄(a, dn) is a unique solution µ̄C to the equation (28) with d = dn

in the proof of Lemma 4. Consider the equation (28) with d = c. Then, it is rewritten
as

µ̄C = φ
(a− c

b− c
≥ (1 − β)µ̄C

)
. (29)

It follows by a similar argument to the proof of Lemma 4 that a unique solution µ̄C(a, c)
to this equation (29) is located as a−c

b−c < µ̄C(a, c) < 1. Furthermore, µ̄C(a, dn) <
µ̄C(a, c) follows from c < dn by a similar argument to the proof of Lemma 6-(1).
Hence, µn

C < µ̄C(a, dn) < µ̄C(a, c) < 1 for any n. This contradicts lim
n→∞

µn
C = 1.

Hence, it is established that sup µCDD
µDDD

is finite. (Q.E.D.)

Proof of Theorem 11
Consider a three-mode strategy s in a prisoner’s dilemma with two timings and consider
the corresponding two-timing three-mode strategy in a prisoner’s dilemma with K
timings via the procedure TCk∗ = TC(s), TCDDk∗+1

= TCDD(s), and TDDDk∗+1
=

TDDD(s).
The necessity is straightforward, because the timing k∗ along the equilibrium path

in the prisoner’s dilemma with K timings is equivalent to the beginning of play in the
prisoner’s dilemma with two timings and no deviation incentive from the two-timing
three-mode strategy within timings k∗ and k∗ + 1 in the prisoner’s dilemma with K
timings is equivalent to no deviation incentive from the corresponding three-mode
strategy in the prisoner’s dilemma with two timings.

We show the sufficiency. Suppose that the three-mode strategy s is a sequential
equilibrium in the prisoner’s dilemma with two timings. Then, by the same argument
as the necessity part, a deviation from the two-timing three-mode strategy within
timings k∗ and k∗ + 1 in the prisoner’s dilemma with K timings is not beneficial for
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any type. Furthermore, a deviation to moving at timing k 6= k∗, k∗+1 is not beneficial
either. First, consider a deviation to choosing C at timing k < k∗. The expected
utility from this deviation is given by

φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗})(c− α(b− c)) + φ(TCk∗ ∩ {(α, β) ∈ T |β ≥ β∗})a
+ φ(TCDDk∗+1

)a+ φ(TDDDk∗+1
)(c− α(b− c))

where the first term corresponds to the case in which his opponent is a type (α, β) ∈
TCk∗ with β < β∗, he observes the deviation to C at the earlier timing k, and he
responds with D at the later timing k∗ to the choice of C. Compare it with the
expected utility from following Ck∗-mode, which is given by

φ(TCk∗ )a+ φ(TCDDk∗+1
)a+ φ(TDDDk∗+1

)(c− α(b− c)).

The latter utility is higher than the former by φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗})[a −
(c − α(b − c))] > 0 for any type (α, β) ∈ T . Thus, Ck∗-mode is strictly better than
a deviation to choosing C at timing k < k∗, and the equilibrium behavior is at least
as good as Ck∗-mode by the optimality of the equilibrium behavior within timings k∗

and k∗ +1. Hence, a deviation to choosing C at timing k < k∗ is not beneficial for any
type.

Second, consider a deviation to choosing D at timing k < k∗. The expected utility
from this deviation is d because his opponent will observe the deviation to D and
will respond with D for sure. Compare this with the expected utility from following
CDDk∗+1-mode, which is given by φ(TCk∗ )a + φ(TCDDk∗+1

)d + φ(TDDDk∗+1
)d. The

latter utility is higher than the former by φ(TCk∗ )(a− d) > 0 for any type (α, β) ∈ T .
Thus, CDDk∗+1-mode is strictly better than a deviation to choosing D at timing
k < k∗, and the equilibrium behavior is at least as good as CDDk∗+1-mode by the
optimality of the equilibrium behavior within timings k∗ and k∗+1. Hence, a deviation
to choosing D at timing k < k∗ is not beneficial for any type.

Finally, consider a deviation to moving at k > k∗+1. The optimal way of deviation
is CDDk-mode for a type (α, β) ∈ T with β ≥ β∗ and DDDk for a type (α, β) ∈ T with
β ≤ β∗ because his opponent is supposed to finish choosing either C or D before timing
k and he simply chooses his best response to the observed choice by the opponent.
Note that the expected utilities from CDDk-mode and DDDk-mode are the same
as the expected utilities from CDDk∗+1-mode and DDDk∗+1-mode respectively. The
equilibrium behavior is at least as good as CDDk∗+1-mode and DDDk∗+1-mode by
the optimality of the equilibrium behavior within timings k∗ and k∗ + 1 and hence it
is at least as good as deviating to moving at timing k > k∗ + 1. (Q.E.D.)

Proof of Theorem 12
Consider a three-mode strategy with a threshold k∗ in a prisoner’s dilemma with
K timings. Suppose that a three-mode strategy with a threshold k∗ is a sequential
equilibrium in a prisoner’s dilemma with K timings. Let TCk

(1 ≤ k ≤ k∗), TCDDk

(k∗ + 1 ≤ k ≤ K), and TDDDk
(k∗ + 1 ≤ k ≤ K) denote the sets of types who follow

Ck-mode, CDDk-mode, and DDDk-mode respectively in this equilibrium.
[Step 1] First, we show that φ(∪1≤k≤k∗TCk

∩{(α, β) ∈ T |β < β∗}) > 0. Suppose to the
contrary that φ(∪1≤k≤k∗TCk

∩ {(α, β) ∈ T |β < β∗}) = 0. Then, any type (α, β) ∈ TCk

with 1 ≤ k ≤ k∗ is a type with β ≥ β∗. This type responds with C to a choice of C
by his opponent at an earlier timing k′ < k than him. This means that choosing C at
timing k with 1 ≤ k ≤ k∗ induces the same outcome; (C,C) and (C,D) are realized
with probabilities φ((∪1≤k≤k∗TCk

) ∪ (∪k∗+1≤k≤KTCDDk
)) and φ(∪k∗+1≤k≤KTDDDk

)
respectively. Note also that following CDDk with k∗ + 1 ≤ k ≤ K induces the
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same outcome; (C,C) and (D,D) are realized with probabilities φ(∪1≤k≤k∗TCk
) and

φ((∪k∗+1≤k≤KTCDDk
) ∪ (∪k∗+1≤k≤KTDDDk

)) respectively. Similarly, following DDDk

with k∗ + 1 ≤ k ≤ K induces the same outcome; (D,C) and (D,D) are realized
with probabilities φ(∪1≤k≤k∗TCk

) and φ((∪k∗+1≤k≤KTCDDk
) ∪ (∪k∗+1≤k≤KTDDDk

))
respectively. The sequential rationality implies that a type (α, β) ∈ TCk

with 1 ≤
k ≤ k∗ prefers the outcome in which (C,C) and (C,D) are realized with proba-
bilities φ((∪1≤k≤k∗TCk

) ∪ (∪k∗+1≤k≤KTCDDk
)) and φ(∪k∗+1≤k≤KTDDDk

) to both the
outcome in which (C,C) and (D,D) are realized with probabilities φ(∪1≤k≤k∗TCk

)
and φ((∪k∗+1≤k≤KTCDDk

) ∪ (∪k∗+1≤k≤KTDDDk
)) and the outcome in which (D,C)

and (D,D) are realized with probabilities φ(∪1≤k≤k∗TCk
) and φ((∪k∗+1≤k≤KTCDDk

)∪
(∪k∗+1≤k≤KTDDDk

)). The parallel implications hold for a type (α, β) ∈ TCDDk
with

k∗ + 1 ≤ k ≤ K and a type (α, β) ∈ TDDDk
with k∗ + 1 ≤ k ≤ K. Now, in-

duce a two-timing three-mode strategy by setting T ′
Ck∗

= ∪1≤k≤k∗TCk
, T ′

CDDk∗+1
=

∪k∗+1≤k≤KTCDDk
, and T ′

DDDk∗+1
= ∪k∗+1≤k≤KTDDDk

where T ′
Ck∗

, T ′
CDDk∗+1

, and
T ′

DDDk∗+1
denote the sets of types who follow Ck∗-mode, CDDk∗+1-mode, andDDDk∗+1-

mode respectively in the induced strategy. Then, following Ck∗-mode, CDDk∗+1-mode,
and DDDk∗+1-mode against the two-timing three-mode strategy induces the same out-
come in the equilibrium. Hence, the implications of the sequential rationality in the
original sequential equilibrium guarantee that this two-timing three-mode strategy is
also a sequential equilibrium. Apply Theorem 11 to the induced two-timing three-mode
strategy. Then, the corresponding three-mode strategy s in a prisoner’s dilemma with
two timings where TC(s) = T ′

Ck∗
, TCDD(s) = T ′

CDDk∗+1
, and TDDD(s) = T ′

DDDk∗+1

must be a sequential equilibrium. In this three-mode equilibrium, we must have
φ(TC(s) ∩ {(α, β) ∈ T |β < β∗}) = 0. This contradicts Lemma 2.
[Step 2] Second, we show that φ(TCk∗ ) > 0. Actually, we show a stronger result that
φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗}) > 0. Suppose to the contrary that φ(Ck∗ ∩ {(α, β) ∈
T |β < β∗}) = 0. Then, by Step 1, we have φ(∪1≤k≤k∗−1TCk

∩{(α, β) ∈ T |β < β∗}) > 0.
Hence, there is a timing k′ with 1 ≤ k′ ≤ k∗ − 1 such that φ(TCk′ ∩ {(α, β) ∈ T |β <
β∗}) > 0. Take a type (α, β) ∈ TCk′ ∩ {(α, β) ∈ T |β < β∗}. His expected utility from
following Ck′-mode is

φ(∪1≤k≤k′−1TCk
)(b− β(b− c)) + φ(∪k′≤k≤k∗−1TCk

)a
+ φ(∪k∗+1≤k≤KTCDDk

)a+ φ(∪k∗+1≤k≤KTDDDk
)(c− α(b− c))

where the first term corresponds to the case in which his opponent is a type (α, β) ∈ TCk

with 1 ≤ k ≤ k′−1, the opponent chooses C at an earlier timing k < k′ than him, and
he responds with D at the later timing k′ because D is the strict best response to C
under β < β∗. His expected utility from deviating to Ck∗-mode is

φ(∪1≤k≤k∗−1TCk
)(b−β(b−c))+φ(∪k∗+1≤k≤KTCDDk

)a+φ(∪k∗+1≤k≤KTDDDk
)(c−α(b−c)).

The latter utility is higher than the former utility by φ(∪k′≤k≤k∗−1TCk
)(b− β(b− c)−

a) > 0 under β < β∗ because φ(∪k′≤k≤k∗−1TCk
) ≥ φ(TCk′ ∩ {(α, β) ∈ T |β < β∗}) > 0.

This is a contradiction to the equilibrium.
[Step 3] Third, we show that φ(TC1) = · · · = φ(TCk∗−1

) = 0. Suppose to the contrary
that there is a timing k′ with 1 ≤ k′ ≤ k∗ − 1 such that φ(TCk′ ) > 0. Take a type
(α, β) ∈ TCk′ . Suppose a case in which β < β∗. Then, his expected utility from
following Ck′-mode is

φ(∪1≤k≤k′−1TCk
)(b− β(b− c)) + φ(TCk′ )a

+ φ(∪k′+1≤k≤k∗TCk
∩ {(α, β) ∈ T |β ≥ β∗})a+ φ(∪k′+1≤k≤k∗TCk

∩ {(α, β) ∈ T |β < β∗})(c− α(b− c))
+ φ(∪k∗+1≤k≤KTCDDk

)a+ φ(∪k∗+1≤k≤KTDDDk
)(c− α(b− c))
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where

1. the first term corresponds to the case in which his opponent is a type (α, β) ∈ TCk

with 1 ≤ k ≤ k′ − 1, the opponent chooses C at an earlier timing k < k′ than
him, and he responds with D at the later timing k′ because D is the strict best
response to C under β < β∗,

2. the second term corresponds to the case in which his opponent is a type (α, β) ∈
TCk′ and chooses C at timing k′ simultaneously with him,

3. the third term corresponds to the case in which his opponent is a type (α, β) ∈
TCk

with k′+1 ≤ k ≤ k∗ such that β ≥ β∗, the opponent moves at timing k after
he chooses C at timing k′ and responds with C because C is a best response to
C under β ≥ β∗, and

4. the fourth term corresponds to the case in which his opponent is a type (α, β) ∈
TCk

with k′ + 1 ≤ k ≤ k∗ such that β < β∗, the opponent moves at timing k
after he chooses C at timing k′ and responds with D because D is the strict best
response to C under β < β∗.

His expected utility from deviating to Ck∗-mode is

φ(∪1≤k≤k′∗−1TCk
)(b− β(b− c)) + φ(TCk∗ )a

+ φ(∪k∗+1≤k≤KTCDDk
)a+ φ(∪k∗+1≤k≤KTDDDk

)(c− α(b− c)).

The latter utility is higher than the former utility by

φ(TCk′ )[(b− β(b− c)) − a]
+ φ(∪k′+1≤k≤k∗−1TCk

∩ {(α, β) ∈ T |β ≥ β∗})[(b− β(b− c)) − a]
+ φ(∪k′+1≤k≤k∗−1TCk

∩ {(α, β) ∈ T |β < β∗})[(b− β(b− c)) − (c− α(b− c))]
+ φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗})[a− (c− α(b− c))]
≥ φ(TCk′ )[(b− β(b− c)) − a] + φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗})[a− (c− α(b− c))]
> 0

where the last inequality holds because φ(TCk′ ) > 0 by the supposition and φ(TCk∗ ∩
{(α, β) ∈ T |β < β∗}) > 0 by Step 2. This is a contradiction to the equilibrium.

Suppose the remaining case in which β ≥ β∗ for the taken type (α, β) ∈ TCk′ .
Then, his expected utility from following Ck′-mode is

φ(∪1≤k≤k′−1TCk
)a+ φ(TCk′ )a

+ φ(∪k′+1≤k≤k∗TCk
∩ {(α, β) ∈ T |β ≥ β∗})a+ φ(∪k′+1≤k≤k∗TCk

∩ {(α, β) ∈ T |β < β∗})(c− α(b− c))
+ φ(∪k∗+1≤k≤KTCDDk

)a+ φ(∪k∗+1≤k≤KTDDDk
)(c− α(b− c))

where the first term is different from the corresponding utility for the case of β < β∗

because the type with β ≥ β∗ responds with C when his opponent is a type (α, β) ∈ TCk

with 1 ≤ k ≤ k′ − 1 and the opponent chooses C at an earlier timing k < k′ than him.
His expected utility from deviating to Ck∗-mode is

φ(∪1≤k≤k′∗−1TCk
)a+ φ(TCk∗ )a

+ φ(∪k∗+1≤k≤KTCDDk
)a+ φ(∪k∗+1≤k≤KTDDDk

)(c− α(b− c))
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where the first term is different from the corresponding utility for the case of β < β∗

for the same reason as his expected utility from following Ck′-mode. The latter utility
is higher than the former utility by

φ(∪k′+1≤k≤k∗−1TCk
∩ {(α, β) ∈ T |β < β∗})[a− (c− α(b− c))]

+ φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗})[a− (c− α(b− c))]
≥ φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗})[a− (c− α(b− c))]
> 0

where the last inequality holds because φ(TCk∗ ∩ {(α, β) ∈ T |β < β∗}) > 0 by Step 2.
This is a contradiction to the equilibrium.
[Step 4] Finally, we show that φ(CDDk∗+1) > 0. Suppose to the contrary that
φ(CDDk∗+1) = 0. By Step 1 through 3, we have φ(C1) = · · · = φ(Ck∗−1) = 0 and
φ(Ck∗ ∩ {(α, β) ∈ T |β < β∗}) > 0. Take a type (α, β) ∈ Ck∗ ∩ {(α, β) ∈ T |β < β∗}.
Then, his expected utility from following Ck∗ is

φ(TCk∗ )a+ φ(∪k∗+2≤k≤KTCDDk
)a+ φ(∪k∗+1≤k≤KTDDDk

)(c− α(b− c)).

Consider a deviation to the following behavior. Choose ∅ at timing k = 1, · · · , k∗. At
timing k∗ + 1, choose D if the opponent chooses C or D before timing k∗ + 1 and
choose C if the opponent chooses at timing 1 through k∗. His expected utility from
this deviation is

φ(TCk∗ )(b− β(b− c)) + φ(∪k∗+2≤k≤KTCDDk
)a+ φ(∪k∗+1≤k≤KTDDDk

)(c− α(b− c)).

The latter utility is higher than the former utility by φ(TCk∗ )[(b − β(b − c)) − a] > 0
under β < β∗. This is a contradiction to the equilibrium. (Q.E.D.)

Proof of Theorem 13

Suppose that there exists a three-mode equilibrium in PD((a, b, c, d), f). Then, 0 <
α∗(µ) < ᾱ and a type (α, β) with α = α∗(µ) is indifferent between C and CDD. This
means that µCa+ µCDDa+ µDDD[c− α∗(µ)(b− c)] = µCa+ µCDDd+ µDDDd, which
is rearranged into

µCDD

µCDD + µDDD
a+

µDDD

µCDD + µDDD
[c− α∗(µ)(b− c)] = d.

Note that µDDD ≥ φ(α∗(µ) ≤ α,β < β∗) and µCDD ≤ φ(α∗(µ) ≤ α,β > β∗). This
means that

µDDD

µCDD + µDDD
≥ φ(α∗(µ) ≤ α,β < β∗)
φ(α∗(µ) ≤ α,β > β∗) + φ(α∗(µ) ≤ α,β < β∗)

= φ(β < β∗|α∗(µ) ≤ α).

Hence,

(1 − φ(β < β∗|α∗(µ) ≤ α))a+ φ(β < β∗|α∗(µ) ≤ α)[c− α∗(µ)(b− c)] ≥ d. (30)

When condition (27) holds, the inequality (30) cannot be satisfied if d > d̄(a). Suppose
to the contrary that the inequality (30) holds. Then,

(1−φ(β < β∗|α∗(µ) ≤ α))a+φ(β < β∗|α∗(µ) ≤ α)[c−α∗(µ)(b−c)] ≥ d > (1−φ(β < β∗))a+φ(β < β∗)c,

which is rearranged into

φ(β < β∗|α∗(µ) ≤ α)) <
1

1 + b−c
a−cα

∗(µ)
φ(β < β∗).
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This contradicts the condition (27) at α̃ = α∗(µ) and β̃ = β∗. (Q.E.D.)

Proof of Lemma 10
Suppose that d̄(a) is the exact bound for the existence of a three-mode equilibrium. Fix
m > 0 for a given a ∈ (c, b). Suppose to the contrary that for any d ∈ (c, d̄(a)) there
exists a three-mode equilibrium distribution µ = (µC , µCDD, µDDD) with µC ≥ m
in a prisoner’s dilemma PD((a, b, c, d), f). Then, we can take a sequence {dn}∞n=1

such that (1) c < dn < d̄(a), (2) dn < dn+1 and lim
n→∞

dn = d̄(a), and (3) µn
C ≥ m

where µn
C ≡ µmax

C (a, dn). Then, there exists µ∗C ≡ lim
n→∞

µn
C because dn < dn+1 implies

µn
C = µmax

C (a, dn) > µmax
C (a, dn+1) = µn+1

C by Theorem 3. Here, µ∗C ≥ m because
µn

C ≥ m. Then, µ∗C > 0 implies that λ(µ∗C , a, d̄(a)) > 0 because λ(µC , a, d̄(a)) > 0 for
any µC ∈ (0, µ̄C(a, d̄(a))) when d̄(a) is the exact bound for the existence of three-mode
equilibrium so that there is no three-mode equilibrium in PD((a, b, c, d̄(a)), f). Then,
the continuity of λ(µC , a, d) with respect to (µC , d) guarantees that there exists ε > 0
such that λ(µC , a, d) > 0 for any d ∈ (d̄(a) − ε, d̄(a)) and any µC ∈ (µ∗C − ε, µ∗C + ε).
We can find N such that dN ∈ (d̄(a) − ε, d̄(a)) and µN

C ∈ (µ∗C − ε, µ∗C + ε) because
lim

n→∞
dn = d̄(a) and lim

n→∞
µn

C = µ∗C . We have λ(µN
C , a, d

N ) > 0. This is a contradiction

because the three-mode equilibrium distribution µN = (µN
C , µ

N
CDD, µ

N
DDD) must satisfy

λ(µN
C , a, d

N ) = 0. (Q.E.D.)

Proof of Theorem 14
Recall that a three-mode equilibrium distribution µ is a materialist leader pattern if
and only if α∗(µ, a, d) < β∗. Note that a similar argument to the proof of Lemma
7 leads us to conclude that, for (a, d) fixed, when there exist multiple three-mode
equilibria µ = (µC , µCDD, µDDD) and µ′ = (µ′C , µ

′
CDD, µ

′
DDD) in a prisoner’s dilemma

PD((a, b, c, d), f), α∗(µ, a, d) < α∗(µ′, a, d) if and only if µC < µ′C . Hence, for (a, d)
fixed, all the three-mode equilibria in a prisoner’s dilemma PD((a, b, c, d), f) are of a
materialist leader pattern if and only if α∗(µmax(a, d), a, d) < β∗(a).

Now, suppose that d̄(a) is the exact bound for the existence of a three-mode equi-
librium. First, we show that for any a ∈ (c, b) fixed, there exists d ∈ (c, d̄(a)) such that
any three-mode equilibrium in the prisoner’s dilemma PD((a, b, c, d), f) is of a mate-
rialist leader pattern. Suppose to the contrary that for any d ∈ (c, d̄(a)) there exists a
three-mode equilibrium with either a hybrid leader pattern or an inequity concerned
leader pattern in a prisoner’s dilemma PD((a, b, c, d), f). Then, we can take a pair
of sequences {dn}∞n=1 and {µn}∞n=1 such that (1) c < dn < d̄(a), (2) dn < dn+1 and
lim

n→∞
dn = d̄(a), and (3) α∗(µn, a, dn) ≥ β∗ where µn = µmax(a, d). Then, there exists

µ∗C ≡ lim
n→∞

µn
C because dn < dn+1 implies µn

C = µmax
C (a, dn) > µmax

C (a, dn+1) = µn+1
C by

Theorem 3. Lemma 10 guarantees that µ∗C = lim
n→∞

µn
C = 0. By Lemma 2, this implies

that µ∗CDD = lim
n→∞

µn
CDD = φ(β ≥ β∗) and µ∗DDD = lim

n→∞
µn

DDD = φ(β < β∗). Hence,

the expression (4) of α∗ gives

lim
n→∞

α∗(µn, a, dn) = lim
n→∞

[a− dn

b− c

µn
CDD

µn
DDD

− dn − c

b− c

]
=
a− d̄(a)
b− c

φ(β ≥ β∗)
φ(β < β∗)

− d̄(a) − c

b− c
= 0.

This means that there exists N such that 0 ≤ α∗(µN , a, dN ) < β∗. This is a contra-
diction.

Then, for each a ∈ (c, b) fixed, we can define

d̂ml(a) ≡ inf{d ∈ (c, d̄(a))| any three-mode equilibrium in PD((a, b, c, d), f) is of a ml-pattern}.
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From the definition it follows that c ≤ d̂ml(a) < d̄(a). Furthermore, any three-mode
equilibrium in any prisoner’s dilemma PD((a, b, c, d), f) with d̂ml(a) < d < d̄(a) is
of a materialist leader pattern because α∗(µmax(a, d), a, d) is strictly decreasing in d
and β∗ is constant in d by Lemma 7 so that if α∗(µmax(a, d′), a, d′) < β∗(a) holds
for d′ ∈ (d̂ml(a), d̄(a)), then α∗(µmax(a, d), a, d) < α∗(µmax(a, d′), a, d′) < β∗(a) holds
for any d ∈ (d′, d̄(a)). There exists a three-mode equilibrium with either a hybrid
leader pattern or an inequity concerned leader pattern in any prisoner’s dilemma
PD((a, b, c, d), f) with c ≤ d < d̂ml(a) for the same reason.

Second, we show the properties of d̂ml(a). Consider a, a′ with c < a < a′ < b.
We show that d̂ml(a) ≤ d̂ml(a′). Consider d ∈ (c, d̂ml(a)). Then, there exists a three-
mode equilibrium with either a hybrid leader pattern or an inequity concerned leader
pattern in PD((a, b, c, d), f). This means that α∗(µmax(a, d), a, d) ≥ β∗(a). Lemma 7
states that α∗(µmax(a, d), a, d) is strictly increasing in a and that β∗(a) is strictly de-
creasing in a. Therefore, α∗(µmax(a′, d), a′, d) > α∗(µmax(a, d), a, d) ≥ β∗(a) > β∗(a′).
Hence, there exists a three-mode equilibrium with either a hybrid leader pattern or an
inequity concerned leader pattern in any prisoner’s dilemma PD((a′, b, c, d), f) with
d ∈ (c, d̂ml(a)). This means that d̂ml(a) ≤ d̂ml(a′).

Third, the relation d̂ml(a) ≤ d̄ml(a) is immediate from Theorem 9-(2).
Finally, recall from Theorem 8 that for any d ∈ (c, b) there exists amax

L (d) and, for
any a ∈ (amax

L (d), b), the type with the strongest incentive to lead under µmax(a, d) is
the (β∗, β∗)-type so that α∗(µmax(a, d), a, d) ≥ β∗(a). This means that lim

a→b
d̂ml(a) = b.

(Q.E.D.)
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Herrmann, Benedikt, and Christian Thöni. 2009. “Measuring Conditional Co-
operation: A Replication Study in Russia,” Experimental Economics, 12(1): 87–92.

Huck, Steffen, and Pedro Rey-Biel. 2006. “Endogenous Leadership in Teams,”
Journal of Institutional and Theoretical Economics, 162(2): 253–261.

Itoh, Hideshi. 2004. “Moral Hazard and Other-Regarding Preferences,” Japanese
Economic Review, 55(1): 18–45.

Kandel, Eugene, and Edward P. Lazear. 1992. “Peer Pressure and Partnerships,”
Journal of Political Economy, 100(4): 801–817.

Kukushkin, Nikolai S. 2013. “Monotone Comparative Statics: Changes in Prefer-
ences versus Changes in the Feasible Set,” Economic Theory, 52(3): 1039–1060.

76



Li, Jianpei 2009. “Team Production with Inequity Averse Agents,” Portuguese Eco-
nomic Journal, 8(2): 119–136.

Levine, David K. 1998. “Modeling Altruism and Spitefulness in Experiment,” Review
of Economic Dynamics, 1(3): 593–622.

Marx, Leslie M., and Steven A. Matthews. 2000. “Dynamic Voluntary Contri-
bution to a Public Project,” Review of Economic Studies, 67(2): 327–358.

Milgrom, Paul R., and Chris Shannon. 1994. “Monotone Comparative Statics,”
Econometrica, 62(1): 157–180.

Milgrom, Paul R., and Robert J. Weber. 1982. “A Theory of Auctions and
Competitive Bidding,” Econometrica, 50(5): 1089–1022.

Neilson, William S. 2006. “Axiomatic Reference-Dependence in Behavior toward
Others and toward Risk,” Economic Theory, 28(3): 681–692.

Neilson, William S., and Jill Stowe. 2010. “Piece-Rate Contracts for Other-
Regarding Workers,” Economic Inquiry, 48(3): 575–586.

Nosenzo, Daniele, and Martin Sefton. 2012. “Endogenous Move Structure and
Voluntary Provision of Public Goods: Theory and Experiment,” Journal of Public
Economic Theory, 13(5): 721–754.
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