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Abstract

We study a new class of finitely repeated games with optional monitoring,
where each player automatically receives complete information about the other
players’ actions with some exogenously given probability. Only when the
automatic information did not arrive, the player privately decides whether to
exercise a costless monitoring option or not. We show that a weak decrease in
the vector of the players’ probabilities of automatic monitoring is a necessary and
sufficient condition for any repeated game with automatic and optional monitoring
to have a weakly greater sequential equilibrium payoff vector set. This result
considerably strengthens our earlier result, which only compares purely optional
monitoring and the standard model of purely automatic monitoring. We also
provide examples where existing folk theorems hold under any automatic and
optional monitoring structure but not under the standard model.
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1. Introduction

This paper studies repeated games where monitoring is part of the players’ decision
making. Particularly, we present a new class of repeated games with optional
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monitoring, where each player can costlessly decide whether to monitor the other
players’ actions or not. This paper introduces a possibility that each player may
automatically learn the others’ actions with some exogenously given probability, and
the players’ monitoring decisions are relevant only when the automatic information
did not arrive.

More concretely, we set up a model of finitely repeated games with the following
structure. In each period, after the players have chosen their stage-game actions, each
player automatically receives complete information about the other players’ actions
with some exogenous probability which does not depend on the actions. We assume
that arrivals of the automatic information are independent across the players and
over time. If the automatic information did not arrive, the player privately decides
whether to exercise his monitoring option or not. If he exercises the option, he learns
the others’ actions without any noise. Otherwise, he does not get any information
about them.1 It is costless to monitor the other players, and the monitoring decision
is completely unobservable. Namely, each player receives no signal as to whether any
other player learnt his action either by automatic monitoring or his own monitoring.
Our earlier paper (Miyahara and Sekiguchi [9]) studies the case of purely optional
monitoring, where the automatic information never arrives.

We have three results. The first two results examine how the sequential
equilibrium payoff vector set of the repeated games with automatic and optional
monitoring depends on the vector of the players’ automatic monitoring probabilities,
which we simply call the monitoring vector. We first show that for any stage game,
any number of repetition, and any discount factor, the sequential equilibrium payoff
vector set of the corresponding repeated game weakly decreases (in the sense of set
inclusion) if the monitoring vector weakly increases. In other words, any sequential
equilibrium payoff vector under a given monitoring vector continues to be a sequential
equilibrium payoff vector if the monitoring vector decreases to any direction.

Second, and more interestingly, we show that a converse of the above result is also
true. Fix two n-dimensional monitoring vectors λ and λ′ such that λ ≥ λ′ does not
hold. Then, an n-player game exists such that the two-period repeated game under
λ′ has a strictly smaller sequential equilibrium payoff vector set than the two-period
repeated game under λ if the players are patient enough. Together with the first
result, we see that a weak decrease in the monitoring vector is a necessary and
sufficient condition for any repeated game with automatic and optional monitoring
to have a weakly greater sequential equilibrium payoff vector set. Those results
considerably strengthen the results of [9], which just compares the standard model
of purely automatic monitoring and the case of purely optional monitoring.

Our third result is as to when a folk theorem (like Benôıt and Krishna [1],
Smith [10], and Gossner [4]) holds under any monitoring vector. It is easy to verify
that our first result extends when we compare purely automatic monitoring and our
automatic and optional monitoring. Therefore, if an existing folk theorem applies
to some stage game under purely automatic monitoring, the same theorem applies

1This assumption denies a possibility that the player learns the others’ actions from his stage

payoff. To this end, we will assume that the players collect their stage payoffs in total, at the end

of the repeated game.
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to the same stage game under any monitoring vector. Our third result proves that
its converse is not true. Namely, we show that for any n, an n-player stage game
exists such that (i) it has a unique Nash equilibrium, (ii) the full dimensionality
condition is satisfied, and (iii) for any monitoring vector, there exists T such that the
undiscounted T -period repeated game with that monitoring vector has a sequential
equilibrium which gives each player a different average payoff from the stage-game
equilibrium. The second and third conditions allow us to apply existing folk theorems
for any monitoring vector. However, the first condition denies any folk theorem under
purely automatic monitoring. Hence, this result highlights a fundamental difference
of our model from the standard model.

One interpretation of our automatic and optional monitoring structure is players’
overlooking. Namely, precise information about their actions is released (for example,
sent by emails), and an absentminded player overlooks it. However, in case he
overlooked the information, he has an opportunity to retrieve it (for example,
by checking his email box). In this interpretation, the probability of automatic
monitoring is the probability that the player is not absentminded.

Another interpretation is failure in avoiding information. As the above argument
suggests, the players sometimes benefit from having a smaller monitoring probability,
because it may create a more efficient equilibrium. Then they may want to install a
device which prevents arrivals of the automatic information.2 If the device is subject
to random malfunction, however, then the probability of malfunction corresponds to
the probability of automatic monitoring.

A key insight into our results is that since optional monitoring is costless and
completely unobservable to the others, a player never hurts from having a smaller
probability of automatic monitoring. The own monitoring simply compensates for
lack of automatic information, because it is impossible to detect it and to inflict
punishment on the monitor. Rather, the smaller probability of automatic monitoring
expands their strategic flexibility. This is true in [9], but it only considers an extreme
case where all players’ probability of automatic monitoring changes from one to zero.
We rather reveal that even a change that decreases only one player’s automatic
monitoring probability in a slightest way is, in some cases, sufficient to create new
strategic possibilities.

Our second and third results are built on an example with a unique stage-game
equilibrium. Namely, this is an example of a finitely repeated game with a nontrivial
equilibrium despite that the stage game has a unique equilibrium, which never arises
under the standard model.3

It is worthwhile to point out that the nontrivial equilibrium has a feature that
a player randomizes over his monitoring decisions in case the automatic information
did not arrive. Since the monitoring decision is private, a potential deviator does
not know whether his deviation will be detected or not. The player who did not
observe the others cannot respond to the deviation, and sequential rationality only
limits behavior of the deviator and the other players knowing the deviation. This

2At the same time, the device must maintain their ability to monitor the others if they wish.
3However, this feature is not novel and is known in [9]. Further, other repeated games with

imperfect monitoring, such as Kandori [5] and Mailath et al. [7], exhibit this type of results. See

also a recent paper by Sugaya and Wolitzky [11].
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limited requirement of sequential rationality, caused by lack of common knowledge
of the deviation, creates a credible punishment which works even if the stage game
has a unique equilibrium. Note that a greater probability of automatic monitoring
is burden for this construction, because it weakens the impact of the players who do
not notice the deviation.

A main body of literature on repeated games with endogenous monitoring rather
assumes that it is costly to monitor the others (for instance, Ben-Porath and
Kahneman [2], Kandori and Obara [6], Miyagawa et al. [8], and Flesch and Perea [3]).
In those papers, a central question is provision of incentives to monitor. Clearly,
adding a possibility of automatic monitoring to those frameworks has quite different
effects from ours, because the automatic information mitigates the incentive problem
about costly monitoring. It would be interesting to investigate those effects more
thoroughly.

The rest of this paper is organized as follows. Section 2 introduces the model.
Section 3 proves that a weak decrease in the monitoring vector is a necessary and
sufficient condition for any repeated game with automatic and optional monitoring
to have a weakly greater sequential equilibrium payoff vector set. Section 4 provides
examples where existing folk theorems hold under any automatic and optional
monitoring structure but not under the standard model. We leave some proofs to the
appendices.

2. Model

Let G be a finite, n-player strategic form game with n ≥ 2, and let Ai be the set
of player i’s pure actions. Player i’s payoff function is given by ui : A → R, where
A ≡ A1 × · · · × An denotes the set of pure action profiles. Each player can choose a
mixed action, and ∆Ai denotes the set of player i’s mixed actions.

After the players have chosen their actions, each player i automatically receives
complete information about the other players’ actions with probability λi ∈ (0, 1). We
call λi player i’s automatic monitoring probability. We assume that each λi does not
depend on the actions and that the arrivals of automatic information are independent
across the players. Let λ = (λ1, . . . , λn) be the vector of automatic monitoring
probabilities, called the monitoring vector hereafter. If the automatic information
did not arrive, each player privately decides whether to monitor his opponents or
not.4 Monitoring the others is costless.

Fix δ ∈ (0, 1] and an integer T ≥ 2. Let Gδ(λ, T ) be the δ-discounted
T -period repeated game with automatic and optional monitoring where G is played
in periods t = 1, . . . , T . In each period t ≥ 1, each player i chooses an action ai ∈ Ai

simultaneously. Then, player i decides whether to monitor all the other players
depending on his choice of action, in case the automatic information did not arrive.
Each player can choose randomly whether to monitor them or not. We assume that
the monitoring decision is not observable to the other players. Therefore, our model

4We assume that the monitoring decision is binary in order to simplify the notations. It is easy

to extend the analysis to the case where players can monitor any subset of the players.
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belongs to one with private monitoring.5

We also assume that if a player does not monitor the other players, then he
receives no information about their actions. This amounts to assuming that the
players receive all stage payoffs at the end of the repeated game, because the stage
payoffs in general provide information about the actions. The players can monitor
the actions in a period only at the end of that period; it is impossible to acquire
information of any past period.

The information player i obtains in each period t is his action and information
about the other players’ actions in that period. We define Ii = [A × {0, 1}] ∪ Ai

as the set of information player i obtains in one period. Here, (i) (a, 0) ∈ Ii means
that player i chose ai and then automatically learnt that the other players’ actions
were a−i, (ii) (a, 1) ∈ Ii means that player i chose ai, did not receive the automatic
information, and then found the other players playing a−i by his own monitoring, and
(iii) ai ∈ Ii means that player i chose ai, did not receive the automatic information,
and did not monitor the other players.

Player i’s history at period t ≥ 2 consists of all his past information he obtains
up to the end of period t− 1. For t ≥ 2, the set of all histories for player i at period t
is H t

i = (Ii)
t−1. Let H1

i be an arbitrary singleton set. The set of player i’s histories
at all periods is

Hi =
T∪
t=1

H t
i .

A strategy of player i is denoted by σi = (σa
i , σ

m
i ). Here, σa

i prescribes player i’s
mixed action at each history at each period, namely, σa

i : Hi → ∆Ai. Then σm
i

prescribes a probability that player i monitors all the other players when automatic
information did not arrive, given any history at any period and any stage-game action
chosen in that period, namely, σm

i : Hi × Ai → [0, 1]. We call an element of Hi × Ai

a history-action pair.
Given a strategy profile σ = (σ1, . . . , σn), player i’s payoff in Gδ(λ, T ) is

1− δ

1− δT
E

[
T∑
t=1

δt−1ui
(
a(t)

)]
,

where a(t) is the action profile in period t, and the expectation is taken with respect
to σ and arrivals of automatic information.

The solution concept of this paper is sequential equilibrium adapted to our finitely
repeated game. A system of beliefs is a function which maps each history hti to
a probability distribution of the other players’ history profiles (htj)j ̸=i and maps
each history-action pair (hti, ai) to a probability distribution of the other players’
history-action pair profiles (htj, aj)j ̸=i. A strategy profile is completely mixed if at
any history, any stage-game action is selected with positive probability and at any
history-action pair, any monitoring decision is selected with positive probability. A
tremble of a strategy profile is defined as a sequence of completely mixed strategy
profiles converging to the strategy profile. Given a strategy profile σ, a system

5[9] studies the case of λ = (0, . . . , 0).
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of beliefs is consistent if there exists a tremble of σ such that the corresponding
sequence of the system of beliefs, obtained from Bayes’ rule, converges to it.6 A
strategy profile σ is a sequential equilibrium, if there exists a consistent system of
beliefs ψ such that (a) at any history of any player i, his continuation strategy is
optimal given σ−i and the belief about the other players’ histories specified by ψ, and
(b) at any history-action pair of any player i, his continuation strategy is optimal
given σ−i and the belief about the other players’ history-action pairs specified by ψ.

3. Monotonicity in the Monitoring Vector

This section examines how the sequential equilibrium payoff vector set of the repeated
games with automatic and optional monitoring depends on the monitoring vector.

Theorem 1. Fix n ≥ 2 and two n-dimensional monitoring vectors λ and λ. Then
the following two conditions are equivalent.

(A) λ ≥ λ.

(B) For any n-player stage game G, any δ ∈ (0, 1], and any integer T ≥ 2, any
sequential equilibrium payoff vector of Gδ(λ, T ) is a sequential equilibrium payoff
vector of Gδ(λ, T ).

Theorem 1 implies that for any G, any T , and any δ, the set of sequential
equilibrium payoff vectors of Gδ(λ, T ) is weakly decreasing in the monitoring vector,
in the sense of set inclusion. The theorem also implies that for any change in the
monitoring vector other than a weak decrease, a discounted finitely repeated game
exists such that a payoff vector attained by a sequential equilibrium before the change
cannot be sustained by a sequential equilibrium after the change. To summarize, a
weak decrease in the monitoring vector is a necessary and sufficient condition for
any repeated game with automatic and optional monitoring to have a weakly greater
sequential equilibrium payoff vector set.

Appendix A proves that (A) implies (B). The intuition behind this part is
simple. Since monitoring is costless and private, the players can always compensate a
smaller probability of automatic monitoring by increasing the probability of his own
monitoring, without affecting their payoffs and beliefs. Therefore, we can modify any
sequential equilibrium of Gδ(λ, T ), so that the modified strategy profile of Gδ(λ, T )
has exactly the same play as the original equilibrium.

The rest of this section verifies that (B) implies (A). Fix n ≥ 2 and two
n-dimensional monitoring vectors, λ and λ, such that λ1 < λ1. Note that, without
loss of generality, this is a denial of λ ≥ λ. It suffices to verify existence of an
n-player stage game G, δ ∈ (0, 1], and T ≥ 2 such that Gδ(λ, T ) has a strictly smaller
sequential equilibrium payoff vector set than Gδ(λ, T ).7 The next result, however, is

6For a consistent system of beliefs and for any ht
i and ai, there is a close connection between the

beliefs at ht
i and at (ht

i, ai). Namely, the probability of any history-action pair profile (ht
j , aj)j ̸=i at

(ht
i, ai) is the product of the probability of (ht

j)j ̸=i at ht
i and the probability of (aj)j ̸=i under the

other players’ mixed actions at (ht
j)j ̸=i.

7Here we reverse the roles of λ and λ in the statement of Theorem 1.
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somewhat stronger in the following senses. First, we can set T = 2, so that a very
short horizon is sufficient to create a difference. Second, we can arbitrarily fix δ, so
that patience is not indispensable for creating a difference. For that matter, the same
stage game which works for the fixed δ also works for any greater discount factor.
Third, the choice of G depends only on λ1 and λ1, so that the values of λi and λi for
any i ≥ 2 are irrelevant. For that matter, for any µ ∈ [λ1, λ1), we can choose G so

that it works not only for λ and λ, but also for any two monitoring vectors λ′ and λ
′

such that λ′1 ≤ µ < λ
′
1.

Proposition 1. Fix n ≥ 2, µ ∈ (0, 1), and δ ∈ (0, 1]. Then, an n-player strategic
form game G exists such that for any λ and λ such that λ1 ≤ µ < λ1, G

δ(λ, 2)
has a unique sequential equilibrium payoff vector for any δ, and Gδ(λ, 2) with any
δ ≥ δ has a sequential equilibrium whose payoff vector is different from the sequential
equilibrium payoff vector of Gδ(λ, 2).

Proof. Fix n ≥ 2, µ ∈ (0, 1), and δ ∈ (0, 1]. Define G so that A1 = {U,M,D},
A2 = {L,C,R}, and if n ≥ 3, Ai = {bi, ci} for any i ≥ 3. u1 and u2 depend only on
(a1, a2), and are represented by the following payoff matrix.

L C R

U 4, 4 0, 3 4, 3− µ
1−µ

δ

M 0, 3− 1−µ
µ

6, 3 0, 3 + δ

D 3, 6 3, 0 3, 6

Figure 1: Payoff matrix for players 1 and 2

For i ≥ 3 (if any),

ui(a) =


3 if (a1, a2) = (M,C) and ai = bi,

2 if (a1, a2) ̸= (M,C) and ai = bi,

0 if ai = ci.

(1)

First, we show that G has a unique Nash equilibrium (U,L, b3, . . . , bn). It
is sufficient to show that C is not played with positive probability in any
Nash equilibrium, because we have a unique outcome (U,L, b3, . . . , bn) by iterated
elimination of strictly dominated actions in the reduced game obtained after
eliminating C from the set of actions of player 2.

Suppose that player 1 plays U with probability x, M with probability y, and D
with probability 1 − x − y in a Nash equilibrium of G. A necessary and sufficient
condition for C to be a best response of player 2 is

(1− µ)y

µ
+

6(1− µ)

δµ
(1− x− y) ≤ x ≤ (1− µ)y

µ
− 6(1− x− y).

This condition implies 1−x−y = 0 and x = (1−µ)y/µ, which in turn imply x = 1−µ
and y = µ. Since x > 0 and y > 0, player 1 must be indifferent between U and M ,
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and that holds only if player 2 plays C with probability 2/5. Then, D is a unique
best response of player 1. Therefore, C is not played with positive probability in any
Nash equilibrium. Hence, (U,L, b3, . . . , bn) is a unique Nash equilibrium of G.

Fix λ and λ such that λ1 ≤ µ < λ1. In what follows, we show that Gδ(λ, 2) with
any δ ≥ δ has a sequential equilibrium payoff vector which is different from the unique
Nash equilibrium payoff vector of G, and Gδ(λ, 2) with any δ ∈ (0, 1] has a unique
sequential equilibrium payoff vector, which equals the unique Nash equilibrium payoff
vector of G.

First, fix δ ≥ δ, and let σ̂ be the following strategy profile of Gδ(λ, 2).

• In period 1, player 1 playsM . Then if the automatic information did not arrive,
he monitors the other players with probability (µ− λ1)/(1− λ1), and does not
monitor them with probability (1 − µ)/(1 − λ1) irrespective of his action. In
period 2, player 1 plays M and monitors the other players irrespective of his
action if he found player 2 not playing C in period 1. Otherwise, player 1 plays
U and monitors the other players irrespective of his action.

• In period 1, player 2 plays C, and monitors the other players irrespective of his
action. In period 2, player 2 plays L and monitors the other players regardless of
his action if he played C in period 1. Otherwise, player 2 plays C and monitors
the other players regardless of his action.

• Player i ≥ 3 plays bi and monitors the other players regardless of his action at
any history.

The play under σ̂ is (M,C, b3, . . . , bn) in period 1 and (U,L, b3, . . . , bn) in period 2,
and the average discounted payoff vector is(

6 + 4δ

1 + δ
,
3 + 4δ

1 + δ
,
3 + 2δ

1 + δ
, . . . ,

3 + 2δ

1 + δ

)
.

It is different from the Nash equilibrium payoff vector of the stage game. It remains
to show that σ̂ is a sequential equilibrium. Fix any consistent system of beliefs given
σ̂. First, we consider player 1.

• At any history of player 1 at period 2 such that player 1 found player 2 not
playing C in period 1, player 1 believes that player 2 plays C with probability
one in period 2. Hence, it is optimal for player 1 to playM with any monitoring
decision in period 2.

• At any history of player 1 at period 2 such that player 1 did not find a deviation
of player 2 in period 1, player 1 believes that player 2 did not deviate and plays
L with probability one in period 2. Hence, it is optimal for player 1 to play U
with any monitoring decision in period 2.

• In period 1, player 1 plays a short-run best response, and his action does not
affect future play. Further, he has nothing to learn from the others’ actions,
because their strategies are pure. Hence, it is optimal for player 1 to play M
and randomize between monitoring and not monitoring in the way specified by
σ̂ in period 1.

8



Next, we consider player 2.

• At any history of player 2 at period 2 such that he played C in period 1, player 2
believes that player 1 plays U with probability one. Hence, it is optimal for
player 2 to play L with any monitoring decision in period 2.

• At any history of player 2 at period 2 such that he did not play C in period 1,
player 2 believes that player 1 plays U and M with probabilities 1 − µ and µ
respectively. This is because consistency requires that, whether player 2 found
player 1’s deviation or not, he believes that player 1 finds player 2’s deviation
(and therefore plays M in period 2) with probability

λ1 + (1− λ1) ·
µ− λ1
1− λ1

= µ.

Hence, it is optimal for player 2 to play C with any monitoring decision in
period 2, and his stage payoff is 3.

• When player 2 follows σ̂2, his average discounted payoff is (3 + 4δ)/(1 + δ). If
he does not play C in period 1, then his stage payoff is at most 3 + δ. We have
seen that this deviation leads to a continuation play where his stage payoff is 3
in period 2. Therefore, his average discounted payoff when he does not play C
in period 1 is at most (3 + δ + 3δ)/(1 + δ). This implies that conforming to σ̂2
is optimal since δ ≥ δ.

Finally, for any player i ≥ 3, his play does not affect future play at all. Hence, it is
optimal to always play a static best response bi, as is prescribed by σ̂i. Therefore, σ̂
is a sequential equilibrium.

Next, fix δ ∈ (0, 1]. We show that Gδ(λ, 2) has a unique sequential equilibrium
payoff vector. Let σ be a sequential equilibrium in Gδ(λ, 2).

Claim 1. For any i ≥ 3, σi prescribes to play bi at any history.

At any history of player i ≥ 3 at period 2, bi is uniquely optimal. At period 1,
choosing ci instead of bi causes a loss of 2 or more in period 1, and the gain in period 2
is at most 1, because he can guarantee 2 by playing bi. Therefore, playing bi is always
optimal.

Let Â2 ⊆ A2 be the set of player 2’s actions played with positive probability in
period 1 under σ. Also, let Ĥ2

2 be the set of player 2’s histories at period 2 such
that he played a2 ∈ Â2, monitored the other players by either automatic or own
monitoring, and found any player i ≥ 3 (if any) playing bi in period 1. Note that
player 2 may have observed a deviation of player 1 at h22 ∈ Ĥ2

2 .

Claim 2. At any history h22 ∈ Ĥ2
2 , player 2 does not play C with positive probability.

Fix h22 ∈ Ĥ2
2 , and let a1 and a2 be the actions of players 1 and 2 in period 1 under

h22. Define a = (a1, a2, b3, . . . , bn). Then player 2 believes that player 1’s history at
period 2 is either (a, 0), (a, 1), or a1.

9



Suppose, on the contrary to the claim, that σ2 prescribes to play C with positive
probability at h22. We have seen before that C is optimal only if player 2 believes that
player 1 plays U with probability 1−µ andM with probability µ. For player 1, U and
M are not simultaneously optimal at any history at period 2 (player 1 is indifferent
between U and M only when player 2 chooses C with probability 2/5, but then D is
uniquely optimal). Since λ1 > 0, player 2 believes that player 1 is at h21 = (a, 0) with
positive probability, and also believes that player 1 at h21 = (a, 0) plays a pure action
other than D, which we denote by â1.

Player 1 has the same belief about the other players’ actions at (a, 0) and (a, 1).
Thus, â1 is optimal at both (a, 0) and (a, 1). Consequently, in order to believe that
both U andM are played with positive probability, player 2 must believe that player 1
is at h21 = a1 with positive probability and player 1 at h21 = a1 plays the pure action
ã1 ∈ {U,M} \ {â1}.

It follows from consistency that player 1 who chose a1 and did not receive
automatic information in period 1 does not monitor the other players with positive
probability. Hence, sequential rationality implies that player 1 who chose a1 and
did not receive automatic information finds it optimal not to monitor the others in
period 1 and then play ã1 in period 2. Since a2 ∈ Â2, player 1 at the time of his
monitoring decision believes that he reaches h21 = (a, 1) with positive probability if
he monitors the others. As a result, ã1 must be optimal at h21 = (a, 1), which in
turn implies that ã1 must be optimal at h21 = (a, 0). This is a contradiction, which
establishes the claim.

Claim 3. Fix a2 ∈ Â2, and suppose that σ2 prescribes not to monitor the other players
with positive probability if he played a2 and did not receive automatic information
in period 1. Then at the history h22 = a2, player 2 does not play C with positive
probability.

On the contrary, suppose that σ2 prescribes to play C with positive probability
at h22 = a2. From sequential rationality, it must be optimal not to monitor the others
in period 1 and then to play C in period 2, if he played a2 and did not receive
the automatic information in period 1. This implies that it must be also optimal
to monitor the other players in period 1 and then to play always C in period 2, if
he played a2 and did not receive the automatic information in period 1. However,
player 2 believes that he will surely reach a history in Ĥ2

2 , and we have seen in the
proof of Claim 2 that C is not optimal at any history in Ĥ2

2 . Therefore, monitoring the
others and then playing an optimal action for each realized history improve player 2’s
payoff. This is a contradiction.

Claim 4. At any history of player 1 at period 2 such that he did not find any player’s
deviation in period 1, σ1 prescribes U with probability one.

At any such history, consistency requires player 1 to believe that any player did
not deviate in period 1. From Claims 2 and 3, player 2 never plays C if he did not
deviate in period 1 and did not find a deviation by player i ≥ 3. When C is not
played with positive probability, U is uniquely optimal.

Claim 5. At any history of player 2 at period 2 such that he monitored the other
players in period 1, player 2 does not play C with positive probability.
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Let a ∈ A be the combination of player 2’s action and his observation in period 1,
given the history. Then player 2 believes that player 1’s history is either (a, 1), (a, 0),
or a1. From Claim 4, player 1 plays U with probability one at the history a1. Hence,
for C to be optimal, σ1 must prescribe M with positive probability at either (a, 1)
or (a, 0). Since player 1’s belief about the others’ actions is the same at the two
histories, sequential rationality requires that M is optimal at both (a, 1) and (a, 0).
Therefore, σ1 does not prescribe U with positive probability at the two histories,
because U and M cannot be simultaneously optimal. Since player 1 receives the
automatic information and reaches the history (a, 0) with probability λ1 > µ, the
probability with which player 2 believes that player 1 plays U is less than 1 − µ.
Given the belief, C is not optimal.

Claim 6. Fix a2 ∈ A2, and suppose that σ2 prescribes not to monitor the other players
with positive probability if he played a2 and did not receive automatic information
in period 1. Then at the history h22 = a2, player 2 does not play C with positive
probability.

On the contrary, suppose that σ2 prescribes to play C with positive probability
at h22 = a2. From sequential rationality, it must be optimal not to monitor the others
in period 1 and then to play C in period 2, if he played a2 and did not receive the
automatic information in period 1. This implies that it must be also optimal to
monitor the other players in period 1 and then to play always C in period 2, if he
played a2 and did not receive the automatic information in period 1. However, we
have seen in the proof of Claim 5 that C is not optimal at any history at period 2
where he played a2 and monitored the others in period 1. Therefore, monitoring
the others and then playing an optimal action for each realized history at period 2
improve player 2’s payoff. This is a contradiction.

Claim 7. At any history of player 1 at period 2, σ1 prescribes U with probability one.

Consistency requires player 1 to believe that player 2 conforms to his monitoring
decision given his (possibly deviant) action. Hence, from Claims 5 and 6, player 1
believes that player 2 does not play C with positive probability in period 2. Given
the belief, U is uniquely optimal.

Claim 8. At any history of player 2 at period 2, σ2 prescribes L with probability one.

By Claim 7, player 1 plays U at any history at period 2. Thus, L is uniquely
optimal at any history at period 2.

From Claims 1 to 8, the players follow (U,L, b3, . . . , bn) at any history at period 2.
Given that, play in the first period must form a Nash equilibrium of G. Therefore,
the players play (U,L, b3, . . . , bn) in period 1. The payoff vector of this sequential
equilibrium is (4, 4, 2, . . . , 2), which completes the proof. Q.E.D.

We have two remarks on Theorem 1. First, although we assume that each player’s
automatic monitoring probability is neither 0 nor 1, the results extend to the case
where λi = 0 or λi = 1 for some i. This extension is straightforward, except for
notational cumbersomeness. If λi = 0, player i never receives automatic information.
Thus, we should redefine Ii, the set of information player i obtains in one period, as
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Ii = A ∪ Ai. If λi = 1, the automatic information surely arrives. Thus, we should
redefine Ii as Ii = A. With these modifications, we can redefine each player’s histories
and strategies and study the repeated games accordingly. Then Theorem 1 continues
to hold even if λ and λ contain 0 and/or 1. We omit a proof, because the intuition
should be clear.

Second, we see from the proof of Proposition 1 that for any n-dimensional
monitoring vector λ, an n-player stage game G exists such that G has a unique
equilibrium but Gδ(λ, 2) has multiple sequential equilibrium payoff vectors if δ is
large enough. This further implies that for all large δ, Gδ(λ, T ) with any T ≥ 3
has multiple sequential equilibrium payoff vectors.8 In the standard model of purely
automatic monitoring, if the stage game has a unique equilibrium payoff vector,
any finitely repeated game has a unique subgame perfect equilibrium payoff vector.
Therefore, our results imply that this well-known negative result does not extend to
any automatic and optional monitoring environment.9

4. Folk Theorem

In this section, we compare automatic and optional monitoring with purely automatic
monitoring in view of the folk theorem (Benôıt and Krishna [1], Smith [10], and
Gossner [4]).

As the remark at the end of the previous section indicates, if an existing folk
theorem applies to a given stage game under purely automatic monitoring, the same
folk theorem applies to the same stage game under any monitoring vector. The
following result, which is proved in Appendix B, shows that its converse does not
hold.

Theorem 2. For any n ≥ 2, there exists an n-player strategic form game G such
that

(i) G has a unique Nash equilibrium,

(ii) the full dimensionality condition is satisfied, and

(iii) for any monitoring vector λ, there exists T such that G1(λ, T ) has a sequential
equilibrium which gives each player a different payoff from the Nash equilibrium
of G.

The conditions (ii) and (iii) allow us to apply any existing folk theorem under
any monitoring vector.10 In contrast, the condition (i) implies that no folk theorem
holds under purely automatic monitoring. Therefore, the sufficient condition for a

8For any T ≥ 3, playing a static equilibrium in all periods 1, . . . , T − 2 and then playing a

nontrivial sequential equilibrium of Gδ(λ, 2) in the last two periods form a sequential equilibrium of

Gδ(λ, T ).
9[9] points out this failure of the negative result under purely optional monitoring.

10Note that the condition (iii) limits attention to no discounting. This restriction is not essential,

and we impose it just because some folk theorems assume no discounting presumably for simplicity

(e.g., Gossner [4]).
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folk theorem to hold under any automatic and optional monitoring structure is quite
different from that in the standard model.11 Note that an arbitrarily small departure
from purely automatic monitoring is sufficient for a folk theorem. Theorem 2 thus
highlights a fundamental difference between the standard model and ours.

We have two more remarks. First, the stage game G constructed in the proof of
Proposition 1 satisfies the conditions in Theorem 2. Proposition 1 implies existence
of λ such that Gδ(λ, 2) has a unique sequential equilibrium payoff vector for any
δ. Further, Theorem 2 implies existence of T such that G1(λ, T ) has a nontrivial
equilibrium. These results reveal another difference from the standard model. Under
purely automatic monitoring, if T exists such that the T -period repeated game
has a unique subgame perfect equilibrium payoff vector under any discount factor,
any finitely repeated game with any discount factor has a unique subgame perfect
equilibrium payoff vector.

Second, Proposition 1 and Theorem 2 suggest that, for any two n-dimensional
monitoring vectors λ and λ, the difference between the sequential equilibrium payoff
vector sets of Gδ(λ, T ) and Gδ(λ, T ) may disappear if T and δ are large. Proposition 1
emphasizes the difference in the sequential equilibrium payoff vector sets of Gδ(λ, 2)
and Gδ(λ, 2). However, Theorem 2 implies that existing folk theorems hold under
both λ and λ. It is an interesting topic for future research to examine whether a very
long horizon and (nearly) complete patience nullify the effects caused by differences
in monitoring vectors.12

Appendix A. Proof of Theorem 1

Since Proposition 1 reveals that (B) implies (A), it suffices to verify that (A) implies
(B).

Fix n ≥ 2 and two n-dimensional monitoring vector λ and λ such that λ ≥ λ.
Also fix an n-player stage game G, δ ∈ (0, 1], and T ≥ 2. Let σ ≡ (σi)

n
i=1 be a

sequential equilibrium of Gδ(λ, T ), let ψ be a consistent system of beliefs supporting
σ, and let (σk)∞k=1 be a tremble of σ such that the sequence of the corresponding
systems of beliefs converges to ψ. For each k, we define a strategy profile of Gδ(λ, T ),
σk ≡ (σk

i )
n
i=1, in the following way. For any i such that λi = λi, we define σk

i = σk
i .

For any i such that λi < λi, suppose player i plays Gδ(λ, T ) as follows.

• Player i has a private randomization device, called roulette, which selects 0 with
probability xi ≡ (λi − λi)/(1− λi) and selects 1 with probability 1− xi. Note
that xi ∈ (0, 1).

• In period 1, player i plays the mixed action σk
i prescribes at h1i . If player i

did not obtain automatic information, he spins his roulette. If it selects 0, he
monitors the other players with probability 1. If it selects 1, his monitoring

11In the stage game constructed in the proof, the unique Nash equilibrium payoff vector is not on

the Pareto frontier of the feasible and individually rational payoff vector set. Therefore, the failure

of the existing folk theorems is significant in this game.
12This issue is absent in [9]. The difference between purely automatic monitoring and purely

optional monitoring simply enlarges if T gets larger.
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decision is the one σk
i prescribes at (h1i , ai), where ai is his stage-game action

in this period.

• Player i’s behavior in period t ≥ 2 depends on his history and past realizations
of his roulette (if any). Suppose t ≥ 2 and he is at a history at period t,
denoted by hti = (ωτ

i )
t−1
τ=1, where ω

τ
i ∈ Ii for any τ ≤ t− 1. Define a new history

h
t

i = (ωτ
i )

t−1
τ=1 so that for any τ ≤ t− 1,

(i) if ωτ
i = (a, 1) and if his roulette selected 0 in period τ , ωτ

i = (a, 0), and

(ii) otherwise, ωτ
i = ωτ

i .

Let us call h
t

i the effective history. Then, player i plays the mixed action σk
i

prescribes at h
t

i. If player i did not obtain automatic information, he spins his
roulette. If it selects 0, he monitors the other players with probability 1. If it
selects 1, his monitoring decision is the one σk

i prescribes at (h
t

i, ai), where ai is
his stage-game action in this period.

Let us define σk
i as the strategy of Gδ(λ, T ) which is equivalent to the above play.

Note that σk
i is completely mixed because so is σk

i .
Under σk, whenever a player monitored the other players in a period where his

roulette selected 0, he pretends that automatic information arrived in that period and
accordingly follows σk. In any period, player i with λi < λi either receives automatic
information or pretends that he received it with probability λi + (1 − λi)xi = λi.
Therefore, σk generates exactly the same action path as σk. More precisely, if the
players play σk, then

(a) for any profile of histories at some period t, h
t ≡ (h

t

i)
n
i=1, the probability that

their effective histories at period t are h
t
equals the probability that the play

reaches to h
t
when σk is played in Gδ(λ, T ), and

(b) for any profile of histories at some period t, h
t ≡ (h

t

i)
n
i=1, and any a ∈ A, the

probability that their effective histories at period t are h
t
and their actions in

period t are a equals the probability that the play reaches to h
t
and a is played

in period t when σk is played in Gδ(λ, T ).

Note that these equivalences imply that the payoffs of σk and σk coincide for any k.
For each k, let ψk be the system of beliefs derived from σk by Bayes’ rule. Let

(σ, ψ) be the limit of a convergent subsequence of (σk, ψk)∞k=1. By definition, ψ is
consistent given σ. It suffices to prove that σ is a sequential equilibrium of Gδ(λ, T ),
because σk → σ, σk → σ, and continuity imply that the payoffs of σ and σ coincide.

Fix a history of player i or his history-action pair arbitrarily, which has the form
of either ιti = hti or ιti = (hti, ai). His continuation strategy under σi amounts to

replacing hti with the effective history h
t

i and then playing the continuation strategy

of σi at the new history, which has the form of either ιti = h
t

i or ι
t
i = (h

t

i, ai). Since σ
is a sequential equilibrium of Gδ(λ, T ), the continuation strategy of σi at ι

t
i is optimal

under the belief given by ψ. Since σ in Gδ(λ, T ) effectively reproduces σ in Gδ(λ, T ),
this implies that the continuation strategy of σi at ι

t
i when the effective history is ιti

14



is optimal under the belief given by ψ. Note that the beliefs under ψ do not depend
on the effective history, because any consistent belief does not depend on whether a
player obtains information by automatic monitoring or own monitoring. This implies
that the continuation strategy of σi at ιti is optimal under the belief given by ψ,
independently of the effective history. This establishes sequential rationality, and the
proof is complete. Q.E.D.

Appendix B. Proof of Theorem 2

Fix n ≥ 2, and we define G as a special case of the stage game used in the proof of
Proposition 1. Let µ ∈ (0, 1) be a parameter. The sets of each player’s actions are
A1 = {U,M,D}, A2 = {L,C,R}, and if n ≥ 3, Ai = {bi, ci} for any i ≥ 3. As before,
u1 and u2 depend only on (a1, a2), and their payoff matrix is as follows.

L C R

U 4, 4 0, 3 4, 3− µ
1−µ

M 0, 3− 1−µ
µ

6, 3 0, 4

D 3, 6 3, 0 3, 6

If n ≥ 3, the payoff function of any player i ≥ 3 is given by (1). As before, G
has a unique Nash equilibrium (U,L, b3, . . . , bn). It is easy to show that the full
dimensionality condition holds.

Now, we prove that, for any monitoring vector λ, T ≥ 2 exists such that the
repeated game G1(λ, T ) has a sequential equilibrium payoff vector other than the
Nash equilibrium payoff vector of G.

Fix λ, and choose T ≥ 2 so that

µ ≥ λT−1
1 . (2)

Let σ be the following strategy profile of G1(λ, T ). For i ≥ 3, player i plays bi at
any history at any period and observes the other players at any history-action pair
at any period. Player 1 plays σ1 as follows:

• At any history ht1 such that t ≤ T − 2, player 1 plays U , and if the automatic
information did not arrive, he monitors the other players with probability ν,
where

ν =
µ

1
T−1 − λ1
1− λ1

, (3)

irrespective of his action in period t (note that we have 0 ≤ ν < 1 by (2) and
µ < 1).

• In period T − 1, player 1 plays U if he found that player 2 played an action
other than L in some period before period T − 1, and he plays M otherwise.
Whichever action player 1 plays in the period, he observes the other players
with probability ν, if the automatic information did not arrive.
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• In period T , player 1 plays M if he found that player 2 played L in all periods
1, 2, . . . , T − 2 and played an action other than C in period T − 1. Otherwise,
player 1 plays U . Then, player 1 observes the other players, irrespective of his
action in that period.

Player 2 plays σ2 as follows:

• At any history ht2 such that t ≤ T − 2, player 2 plays L and observes the other
players regardless of his action in period t.

• In period T − 1, player 2 plays C if he played L in all past periods. Otherwise,
let τ ≥ 1 be the number of past periods when he played an action other than
L. Then

(i) if (1 − λ1)
τ (1 − ν)τ ≤ µ, he plays L and observes the other players

irrespective of his action, and

(ii) if (1 − λ1)
τ (1 − ν)τ > µ, he plays R and observes the other players

irrespective of his action.

• In period T , player 2 plays C if he played L every period from period 1 to
T − 2 and played an action other than C in period T − 1. Otherwise, he plays
L. Then, player 2 observes the other players, irrespective of his action in that
period.

On the path of play, the players play (U,L, b3, . . . , bn) in all periods except
period T − 1, and play (M,C, b3, . . . , bn) in period T − 1. Hence, the payoff vector of
σ differs from the Nash equilibrium payoff vector of G.

To prove that σ is a sequential equilibrium, we employ a specific tremble and
the corresponding system of beliefs. Let us consider a tremble such that player 2’s
deviation at period T − 1 after playing L in all past periods is far less likely than
any deviation at any other history at any period. Under the corresponding system of
beliefs, at any history of player 1 at period T such that

• in some period t ≤ T − 2, player 1 did not monitor the other players,

• player 2 played L in any period t ≤ T −2 in which player 1 monitored the other
players, and

• player 1 found that player 2 played an action other than C in period T − 1,

player 1 believes that player 2 did not play L in at least one period player 1 did not
monitor the other players.

We show that σ satisfies sequential rationality under this system of beliefs. For
any player i ̸= 2, his action and monitoring decision do not affect the other players’
continuation strategies. Hence, at any history of player i ≥ 3 at any period, it is
always optimal to play bi, a static best reply, and then monitor the others. This proves
sequential rationality for any player i ≥ 3. For player 1, note that any monitoring
decision is optimal at any history-action pair of player 1 at any period, because the
other players’ strategies are pure. Thus, it suffices to show that at any history of
player 1 at any period, the action σ1 prescribes is his short-run best response given
the belief. First, we consider the histories at period T .
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1. Player 1 believes that player 2 plays C at any history such that player 1 found
that player 2 played L in all periods 1, 2, . . . , T − 2 and played an action other
than C in period T − 1. Hence, M is his short-run best response.

2. Player 1 believes that player 2 plays L at any history such that player 1 found
that player 2 played an action other than L in some period t ≤ T − 2. Hence,
U is his short-run best response.

3. Player 1 believes that player 2 plays L at any history such that player 1 found
that player 2 played C in period T −1. Hence, U is his short-run best response.

4. Consider any history such that (i) player 1 did not monitor the other players in
period T − 1 and (ii) in any period t ≤ T − 2 in which he monitored the other
players, player 2 played L. At that history, player 1 believes that player 2 did
not deviate. Hence, player 1 believes that player 2 plays L in period T , and U
is his short-run best response.

5. Consider any history such that (i) in some period t ≤ T − 2 he did not monitor
the other players, (ii) in any period t ≤ T − 2 in which he monitored the
other players, player 2 played L, and (iii) in period T −1 he found that player 2
played an action other than C. At that history, as we mentioned before, player 1
believes that player 2 did not play L in at least one of the periods in which he
did not monitor the other players. Therefore, player 1 believes that player 2
plays L in period T , and U is his short-run best response.

Next, we consider the histories at period T − 1. When player 1 did not observe a
deviation of player 2, player 1 believes that player 2 plays C in period T − 1. Hence,
M is his short-run best response. When player 1 observed that player 2 deviated in
some period before period T − 1, player 1 believes that player 2 never plays C in
period T − 1. Hence, U is his short-run best response.

Finally, at any history of player 1 at period t ≤ T − 2, player 1 believes that
player 2 plays L in period t. Hence, U is his short-run best response.

Next, we examine sequential rationality of σ2. Since player 2 is prescribed to
monitor the other players at any history-action pair at any period, his monitoring
decision is always optimal. Let us check the optimality of his actions. We start with
the histories of player 2 at period T , and there are two cases to consider. First, at
any history such that player 2 played L every period from period 1 to T − 2 and
played an action other than C in period T −1, player 2 believes that player 1’s action
in period T is M if player 1 monitored the other players in all past periods, and is
U otherwise. The probability with which player 1 monitored the other players in all
past periods is

{λ1 + (1− λ1)ν}T−1 = µ,

where the equality follows from (3). Thus, player 2 believes that player 1 plays U
with probability 1−µ andM with probability µ in period T . Therefore, it is optimal
for player 2 to play C in period T . Second, at any other history, player 2 believes that
player 1 plays U in period T . Thus, it is optimal for player 2 to play L in period T .
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Let us examine the histories at period T − 1. First, at any history such that
player 2 played L in all past periods, player 2 believes that player 1 plays M for sure
in period T − 1. If player 2 plays C in period T − 1, his stage payoff is 3. Further, he
reaches to a history at period T where he believes that (U,L, b3, . . . , bn) is played and
receives the stage payoff of 4. If player 2 does not play C in period T − 1, his stage
payoff is at most 4. Further, he reaches to a history at period T where he believes
that player 1’s action is (1 − µ)U + µM , and therefore his stage payoff is 3. Thus,
the current gain from this deviation is at most 1, but the loss in the next period is
1. Hence, it is optimal for player 2 to play C in period T − 1.

Next, consider a history such that player 2 did not always play L in all past
periods. Let τ ≥ 1 be the number of periods in which he did not play L. Now
player 2 believes that player 1 plays U in period T , irrespective of his action in
period T − 1. Hence, it suffices to show that the prescribed action at this history is
a short-run best response of player 2, given his belief. Player 2 believes that player 1
did not observe any deviation with the probability η2 = {(1− λ1)(1− ν)}τ . He thus
expects that player 1’s action in period T − 1 is U with probability 1 − η2 and M

with probability η2. His stage payoff in period T − 1 is
(
3− 1−µ

µ

)
η2 +4(1− η2) if he

plays L, 3 if he plays C, and 4η2 +
(
3− µ

1−µ

)
(1 − η2) if he plays R. If η2 ≤ µ, it is

optimal for player 2 to play L in period T − 1, as is prescribed. Otherwise, playing
R is optimal, again as is prescribed.

Finally, let us fix a history at period t ≤ T − 2. Note first that deviating to an
action other than L in period t reduces his stage payoff by 1 or more. Note also that
whether he deviated before or not, both conforming to the continuation strategy of
σ2 (and playing C in period T − 1 in case he has not deviated before) and deviating
in the current period make player 1 play U in period T . Thus the only future effect of
a deviation in the current period is to change the outcome in period T − 1. Whether
player 2 deviates or not, he believes that the outcome in period T − 1 is either (i)
playing a static best response against player 1 who does not play D and receiving a
stage payoff between 3 and 4, or (ii) playing (M,C, b3, . . . , bn) and receiving the stage
payoff of 3. Therefore, the gain in period T − 1 when player 2 deviated in period t is
at most one. This establishes that no one-shot deviation at this history pays, which
completes the proof. Q.E.D.
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