Python/Excel/SQLによる経済・経営分析のためのデータ処理入門
著者名 | 原 泰史(著) |
---|---|
タイトル | 『Python/Excel/SQLによる経済・経営分析のためのデータ処理入門』 |
出版社 | 東京図書 2023年7月 |
価格 | 3520円 税込 |
紹介
この本では、データサイエンスと世の中で呼ばれていることの前にある、実にめんどくさい「データの集め方」や「データの探し方」を取り上げることにしました。我ながら非常にマニアックな本です!アカデミアや企業で、いざデータサイエンスをやろうと思ってもデータがバラバラになっていたり、データが繋がっていなかったり、データが見つからなくて困っているみなさんに読んで頂けるとうれしいです。
目次
第1章 データを分析する前の、「下ごしらえ」の方法1
1.1 はじめに
1.2 データ分析の流れ
1.3 様々なデータベースのご紹介
1.3.1 企業のデータベース
1.3.2 マーケティング関連のデータベース
1.3.3 生産・販売・調達のデータベース
1.3.4 研究開発のデータベース
1.3.5 分析ツール
1.4 データ分析の道具をどう使い分ける?
1.5 本書で扱う事例について
1.6 本書の読み進め方
1.7 生成型AI(ChatGPT, Bing AI, Google Bard) でデータを探す
1.7.1 ChatGPT3.5
1.7.2 Bing AI
1.7.3 Google Bard
第2章 すべてはExcel からはじめよ
2.1 はじめに
2.2 下準備
2.3 if 関数を利用する
2.4 データの型を変更する
2.5 sum 関数を利用する
2.6 sumif 関数を利用する
2.7 SUMIFS 関数を利用する
2.8 VLOOKUP 関数を利用する
2.9 AVERAGE 関数を利用する
2.10 AVERAGEIF 関数を利用する
2.11 MEDIAN 関数で中央値を求める
2.12 MODE 関数で最頻値を求める
2.13 MAX 関数で最大値を求める
2.14 MIN 関数で最小値を求める
2.15 PERCENTILE.INC 関数で値の傾向を確認する
2.16 ヒストグラムの図を作成する
2.17 ピボットテーブルで値を「まとめなおす」
2.18 CSV データをダウンロードしてExcel に取り込む
2.18.1 パターン1: 素直にそのままExcel で開く
2.18.2 パターン2: インポートウィザードを用いる
2.19 最後にExcel の限界を知る
第3章 Python を使ってデータをみつけよう
3.1 はじめに
3.2 Web スクレイピング: Pandas DataFrame を用いる
3.3 Web スクレイピング: BeautifulSoup を用いる
3.4 楽天API を利用して、楽天市場で提供する商品情報を入手する
3.4.1 楽天市場の情報を入手する
3.4.2 楽天トラベルの情報を入手する
3.4.3 楽天レシピの情報を入手する
3.5 法人情報に緯度経度情報を付与して、地図にプロットする
3.5.1 データを入手する
3.5.2 緯度経度情報を付与する
3.6 Yahoo! API を用いて分類や駅までの距離の情報を取得する
3.6.1 はじめに: Yahoo! Japan アカウントの作成
3.6.2 Jupyter Notebook 上でのAPI の利用
3.7 Linked Open Data (LOD)
3.7.1 Wikipedia(DBpedia) からデータを集めてくる
3.7.2 日本のアニメのデータを集めてくる
第4章 SQL で大規模データを管理・活用する
4.1 はじめに: SQL で色々なデータを管理する
4.2 MySQL とMySQLWorkbench のインストール方法(Windows11 編)
4.3 MySQL のインストール方法(MacOS 編)
4.4 MySQLWorkbench のインストールおよび初期設定for Mac
4.4.1 バイナリをダウンロードする
4.4.2 MySQLWorkbench にアカウントを設定する
4.4.3 ユーザを作成する
4.5 MySQL でデータを処理: 法人企業情報データの集計
4.5.1 スキーマを作成する
4.5.2 Table Data Import を使ってみる
4.5.3 基本情報のテーブルを作成する
4.5.4 Where 文を用いてデータを選択する
4.5.5 表彰(prize) テーブルを作成する
4.5.6 テーブルに表彰データをインポートする
4.5.7 表彰情報と基本情報をinner join で接合して分析する
4.5.8 都道府県ごとの企業数をカウントする
4.5.9 閉鎖した企業数を都道府県ごとにカウントする
4.5.10 閉鎖した企業数を年ごとにカウントする
4.5.11 都道府県ごとに閉鎖した企業数をカウントする
4.5.12 企業の設立年ごとにデータを抽出する
4.5.13 企業の創業年ごとに集計する
4.6 Stata にSQL で集計したデータを取り込む
4.7 Excel にSQL で集計したデータをインポートする
4.8 Python にSQL のデータを読み込む
4.9 Google Big Query の使い方
4.9.1 Big Query サンドボックスを利用する
4.9.2 Big Query パブリックデータからデータを取得する
4.9.3 Looker Studio で可視化する
4.9.4 Google Colab でデータ処理する
4.9.5 Google Spreadsheet でデータの集計を行う
困ったときの逆引き事典
Python で基本的なプログラミング構文を学ぶ
1 標準出力
2 数値演算
3 データ型の変換
4 for 文
5 enumerate 文
6 zip 文
7 enumerate とzip 文を一緒に使う
8 for 文を用いた多重ループ
9 itertools を使った多重ループ
10 if 文
11 論理演算子
12 while 文
13 無限ループと例外処理
pip でパッケージを導入する
パッケージのバージョンを確認する
エラーコードの対処方法
1 Name is Not Defined な場合
2 砂山からダイヤモンドを探す方法(エラーの倒し方)